| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunfo.1 |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 2 |
|
iundomg.2 |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐶 ↑m 𝐵 ) ∈ AC 𝐴 ) |
| 3 |
|
iundomg.3 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≼ 𝐶 ) |
| 4 |
|
iundomg.4 |
⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 5 |
1 2 3
|
iundom2g |
⊢ ( 𝜑 → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) |
| 6 |
|
acndom2 |
⊢ ( 𝑇 ≼ ( 𝐴 × 𝐶 ) → ( ( 𝐴 × 𝐶 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 7 |
5 4 6
|
sylc |
⊢ ( 𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 |
1
|
iunfo |
⊢ ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 9 |
|
fodomacn |
⊢ ( 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ( ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ) ) |
| 10 |
7 8 9
|
mpisyl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ) |
| 11 |
|
domtr |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ ( 𝐴 × 𝐶 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × 𝐶 ) ) |
| 12 |
10 5 11
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ( 𝐴 × 𝐶 ) ) |