Metamath Proof Explorer


Theorem iuneq1

Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iuneq1 ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 iunss1 ( 𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶 )
2 iunss1 ( 𝐵𝐴 𝑥𝐵 𝐶 𝑥𝐴 𝐶 )
3 1 2 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 𝑥𝐵 𝐶 𝑥𝐴 𝐶 ) )
4 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
5 eqss ( 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 ↔ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶 𝑥𝐵 𝐶 𝑥𝐴 𝐶 ) )
6 3 4 5 3imtr4i ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )