Metamath Proof Explorer


Theorem iuneq12d

Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015)

Ref Expression
Hypotheses iuneq1d.1 ( 𝜑𝐴 = 𝐵 )
iuneq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion iuneq12d ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iuneq1d.1 ( 𝜑𝐴 = 𝐵 )
2 iuneq12d.2 ( 𝜑𝐶 = 𝐷 )
3 1 iuneq1d ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )
4 2 adantr ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
5 4 iuneq2dv ( 𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷 )
6 3 5 eqtrd ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )