Description: Obsolete version of iuneq12d as of 1-Sep-2025. (Contributed by Drahflow, 22-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iuneq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
iuneq12dOLD.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | iuneq12dOLD | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | iuneq12dOLD.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | 1 | iuneq1d | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) |
4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
5 | 4 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
6 | 3 5 | eqtrd | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |