Description: Obsolete version of iuneq12d as of 1-Sep-2025. (Contributed by Drahflow, 22-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| iuneq12dOLD.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | iuneq12dOLD | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iuneq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | iuneq12dOLD.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | iuneq1d | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) | 
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | 
| 5 | 4 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) | 
| 6 | 3 5 | eqtrd | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |