Metamath Proof Explorer


Theorem iuneq12daf

Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypotheses iuneq12daf.1 𝑥 𝜑
iuneq12daf.2 𝑥 𝐴
iuneq12daf.3 𝑥 𝐵
iuneq12daf.4 ( 𝜑𝐴 = 𝐵 )
iuneq12daf.5 ( ( 𝜑𝑥𝐴 ) → 𝐶 = 𝐷 )
Assertion iuneq12daf ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iuneq12daf.1 𝑥 𝜑
2 iuneq12daf.2 𝑥 𝐴
3 iuneq12daf.3 𝑥 𝐵
4 iuneq12daf.4 ( 𝜑𝐴 = 𝐵 )
5 iuneq12daf.5 ( ( 𝜑𝑥𝐴 ) → 𝐶 = 𝐷 )
6 5 eleq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝐶𝑦𝐷 ) )
7 1 6 rexbida ( 𝜑 → ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐷 ) )
8 2 3 rexeqf ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝑦𝐷 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
9 4 8 syl ( 𝜑 → ( ∃ 𝑥𝐴 𝑦𝐷 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
10 7 9 bitrd ( 𝜑 → ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
11 10 alrimiv ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
12 abbi1 ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 } = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐷 } )
13 df-iun 𝑥𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 }
14 df-iun 𝑥𝐵 𝐷 = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐷 }
15 12 13 14 3eqtr4g ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )
16 11 15 syl ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )