Step |
Hyp |
Ref |
Expression |
1 |
|
iuneq12daf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
iuneq12daf.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
iuneq12daf.3 |
⊢ Ⅎ 𝑥 𝐵 |
4 |
|
iuneq12daf.4 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
5 |
|
iuneq12daf.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 = 𝐷 ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
7 |
1 6
|
rexbida |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ) ) |
8 |
2 3
|
rexeqf |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
10 |
7 9
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
11 |
10
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
12 |
|
abbi1 |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 } ) |
13 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } |
14 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 } |
15 |
12 13 14
|
3eqtr4g |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
16 |
11 15
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |