Metamath Proof Explorer


Theorem iuneq12df

Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses iuneq12df.1 𝑥 𝜑
iuneq12df.2 𝑥 𝐴
iuneq12df.3 𝑥 𝐵
iuneq12df.4 ( 𝜑𝐴 = 𝐵 )
iuneq12df.5 ( 𝜑𝐶 = 𝐷 )
Assertion iuneq12df ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iuneq12df.1 𝑥 𝜑
2 iuneq12df.2 𝑥 𝐴
3 iuneq12df.3 𝑥 𝐵
4 iuneq12df.4 ( 𝜑𝐴 = 𝐵 )
5 iuneq12df.5 ( 𝜑𝐶 = 𝐷 )
6 5 eleq2d ( 𝜑 → ( 𝑦𝐶𝑦𝐷 ) )
7 1 2 3 4 6 rexeqbid ( 𝜑 → ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
8 7 alrimiv ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) )
9 abbi1 ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 } = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐷 } )
10 df-iun 𝑥𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 }
11 df-iun 𝑥𝐵 𝐷 = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐷 }
12 9 10 11 3eqtr4g ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐷 ) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )
13 8 12 syl ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )