Step |
Hyp |
Ref |
Expression |
1 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
2 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
3 |
1 2
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
4 |
|
eqss |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) |
6 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ) |
7 |
5 6
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ) |
8 |
|
eqss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
9 |
3 7 8
|
3imtr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |