Metamath Proof Explorer


Theorem iuneq2

Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion iuneq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ss2iun ( ∀ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶 )
2 ss2iun ( ∀ 𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐵 )
3 1 2 anim12i ( ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵 ) )
4 eqss ( 𝐵 = 𝐶 ↔ ( 𝐵𝐶𝐶𝐵 ) )
5 4 ralbii ( ∀ 𝑥𝐴 𝐵 = 𝐶 ↔ ∀ 𝑥𝐴 ( 𝐵𝐶𝐶𝐵 ) )
6 r19.26 ( ∀ 𝑥𝐴 ( 𝐵𝐶𝐶𝐵 ) ↔ ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) )
7 5 6 bitri ( ∀ 𝑥𝐴 𝐵 = 𝐶 ↔ ( ∀ 𝑥𝐴 𝐵𝐶 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) )
8 eqss ( 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 ↔ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵 ) )
9 3 7 8 3imtr4i ( ∀ 𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 )