Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iuneq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
Assertion | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
3 | iuneq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) | |
4 | 2 3 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |