Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iuneq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| Assertion | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| 3 | iuneq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |