Step |
Hyp |
Ref |
Expression |
1 |
|
iuneqconst.p |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) |
2 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
3 |
1
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
4 |
3
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 |
4
|
adantlr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
6 |
5
|
ex |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑋 ∈ 𝐴 |
8 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
11 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) ) |
12 |
|
eleq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
13 |
12
|
biimpd |
⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
14 |
11 13
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) ) |
16 |
9 10 15
|
rexlimd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
17 |
6 16
|
impbid |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
18 |
2 17
|
bitr4id |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
19 |
18
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |