Metamath Proof Explorer


Theorem iuneqfzuz

Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis iuneqfzuz.z 𝑍 = ( ℤ𝑁 )
Assertion iuneqfzuz ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 𝑛𝑍 𝐴 = 𝑛𝑍 𝐵 )

Proof

Step Hyp Ref Expression
1 iuneqfzuz.z 𝑍 = ( ℤ𝑁 )
2 1 iuneqfzuzlem ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 𝑛𝑍 𝐴 𝑛𝑍 𝐵 )
3 eqcom ( 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 )
4 3 ralbii ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ↔ ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 )
5 4 biimpi ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 )
6 1 iuneqfzuzlem ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 𝑛𝑍 𝐵 𝑛𝑍 𝐴 )
7 5 6 syl ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 𝑛𝑍 𝐵 𝑛𝑍 𝐴 )
8 2 7 eqssd ( ∀ 𝑚𝑍 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 𝑛𝑍 𝐴 = 𝑛𝑍 𝐵 )