Step |
Hyp |
Ref |
Expression |
1 |
|
iuneqfzuz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
2 |
1
|
iuneqfzuzlem |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
3 |
|
eqcom |
⊢ ( ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ↔ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ↔ ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ) |
5 |
4
|
biimpi |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ) |
6 |
1
|
iuneqfzuzlem |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ 𝑍 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐴 ) |
8 |
2 7
|
eqssd |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵 ) |