Step |
Hyp |
Ref |
Expression |
1 |
|
iuneqfzuzlem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐴 |
3 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
4 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
5 |
2 3 4
|
cbviun |
⊢ ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑚 ∈ 𝑍 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
6 |
5
|
eleq2i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 ↔ 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
7 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑚 ∈ 𝑍 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ↔ ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
8 |
6 7
|
bitri |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 ↔ ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
9 |
8
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 → ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
10 |
9
|
adantl |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 ) → ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
11 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 |
12 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 |
13 |
|
simp2 |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑚 ∈ 𝑍 ) |
14 |
|
rspa |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ) |
15 |
14
|
3adant3 |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ) |
16 |
|
simp3 |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
17 |
|
id |
⊢ ( ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ) |
18 |
|
fzssuz |
⊢ ( 𝑁 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 𝑁 ) |
19 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑁 ) = 𝑍 |
20 |
18 19
|
sseqtri |
⊢ ( 𝑁 ... 𝑚 ) ⊆ 𝑍 |
21 |
|
iunss1 |
⊢ ( ( 𝑁 ... 𝑚 ) ⊆ 𝑍 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
22 |
20 21
|
mp1i |
⊢ ( ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
23 |
17 22
|
eqsstrd |
⊢ ( ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
25 |
1
|
eleq2i |
⊢ ( 𝑚 ∈ 𝑍 ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
26 |
25
|
biimpi |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
27 |
|
eluzel2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) |
28 |
26 27
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
29 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑚 ∈ ℤ ) |
30 |
26 29
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ ) |
31 |
|
eluzle |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑚 ) |
32 |
26 31
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → 𝑁 ≤ 𝑚 ) |
33 |
30
|
zred |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ℝ ) |
34 |
|
leid |
⊢ ( 𝑚 ∈ ℝ → 𝑚 ≤ 𝑚 ) |
35 |
33 34
|
syl |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ≤ 𝑚 ) |
36 |
28 30 30 32 35
|
elfzd |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ ( 𝑁 ... 𝑚 ) ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
38 |
37 3
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
39 |
4
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
40 |
38 39
|
rspce |
⊢ ( ( 𝑚 ∈ ( 𝑁 ... 𝑚 ) ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ 𝐴 ) |
41 |
36 40
|
sylan |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ 𝐴 ) |
42 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ↔ ∃ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝑥 ∈ 𝐴 ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ) |
44 |
43
|
3adant2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 ) |
45 |
24 44
|
sseldd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
46 |
13 15 16 45
|
syl3anc |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
47 |
46
|
3exp |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ( 𝑚 ∈ 𝑍 → ( 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) ) ) |
48 |
11 12 47
|
rexlimd |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ( ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) ) |
49 |
48
|
adantr |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 ) → ( ∃ 𝑚 ∈ 𝑍 𝑥 ∈ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) ) |
50 |
10 49
|
mpd |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
51 |
50
|
ralrimiva |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∀ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
52 |
|
dfss3 |
⊢ ( ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ↔ ∀ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐴 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 𝐵 ) |
53 |
51 52
|
sylibr |
⊢ ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐴 = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) 𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵 ) |