Metamath Proof Explorer


Theorem iunex

Description: The existence of an indexed union. x is normally a free-variable parameter in the class expression substituted for B , which can be read informally as B ( x ) . (Contributed by NM, 13-Oct-2003)

Ref Expression
Hypotheses iunex.1 𝐴 ∈ V
iunex.2 𝐵 ∈ V
Assertion iunex 𝑥𝐴 𝐵 ∈ V

Proof

Step Hyp Ref Expression
1 iunex.1 𝐴 ∈ V
2 iunex.2 𝐵 ∈ V
3 2 rgenw 𝑥𝐴 𝐵 ∈ V
4 iunexg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵 ∈ V ) → 𝑥𝐴 𝐵 ∈ V )
5 1 3 4 mp2an 𝑥𝐴 𝐵 ∈ V