Description: The existence of an indexed union. x is normally a free-variable parameter in B . (Contributed by NM, 23-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 3 | abrexexg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) | |
| 4 | 3 | uniexd | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |
| 6 | 2 5 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |