Metamath Proof Explorer


Theorem iunexg

Description: The existence of an indexed union. x is normally a free-variable parameter in B . (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐵𝑊 ) → 𝑥𝐴 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 dfiun2g ( ∀ 𝑥𝐴 𝐵𝑊 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )
2 1 adantl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐵𝑊 ) → 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )
3 abrexexg ( 𝐴𝑉 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ V )
4 3 uniexd ( 𝐴𝑉 { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ V )
5 4 adantr ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐵𝑊 ) → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ V )
6 2 5 eqeltrd ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐵𝑊 ) → 𝑥𝐴 𝐵 ∈ V )