Metamath Proof Explorer


Theorem iunfictbso

Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion iunfictbso ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω )

Proof

Step Hyp Ref Expression
1 omex ω ∈ V
2 1 0dom ∅ ≼ ω
3 breq1 ( 𝐴 = ∅ → ( 𝐴 ≼ ω ↔ ∅ ≼ ω ) )
4 2 3 mpbiri ( 𝐴 = ∅ → 𝐴 ≼ ω )
5 4 a1d ( 𝐴 = ∅ → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω ) )
6 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎 𝐴 )
7 ne0i ( 𝑎 𝐴 𝐴 ≠ ∅ )
8 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
9 uni0 ∅ = ∅
10 8 9 eqtrdi ( 𝐴 = ∅ → 𝐴 = ∅ )
11 10 necon3i ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅ )
12 7 11 syl ( 𝑎 𝐴𝐴 ≠ ∅ )
13 12 adantl ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → 𝐴 ≠ ∅ )
14 simpl1 ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → 𝐴 ≼ ω )
15 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
16 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
17 14 15 16 3syl ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
18 13 17 mpbird ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → ∅ ≺ 𝐴 )
19 fodomr ( ( ∅ ≺ 𝐴𝐴 ≼ ω ) → ∃ 𝑏 𝑏 : ω –onto𝐴 )
20 18 14 19 syl2anc ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → ∃ 𝑏 𝑏 : ω –onto𝐴 )
21 omelon ω ∈ On
22 onenon ( ω ∈ On → ω ∈ dom card )
23 21 22 ax-mp ω ∈ dom card
24 xpnum ( ( ω ∈ dom card ∧ ω ∈ dom card ) → ( ω × ω ) ∈ dom card )
25 23 23 24 mp2an ( ω × ω ) ∈ dom card
26 simplrr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑏 : ω –onto𝐴 )
27 fof ( 𝑏 : ω –onto𝐴𝑏 : ω ⟶ 𝐴 )
28 26 27 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑏 : ω ⟶ 𝐴 )
29 simprl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝑓 ∈ ω )
30 28 29 ffvelrnd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏𝑓 ) ∈ 𝐴 )
31 30 adantr ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ) → ( 𝑏𝑓 ) ∈ 𝐴 )
32 elssuni ( ( 𝑏𝑓 ) ∈ 𝐴 → ( 𝑏𝑓 ) ⊆ 𝐴 )
33 31 32 syl ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ) → ( 𝑏𝑓 ) ⊆ 𝐴 )
34 30 32 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏𝑓 ) ⊆ 𝐴 )
35 simpll3 ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐵 Or 𝐴 )
36 soss ( ( 𝑏𝑓 ) ⊆ 𝐴 → ( 𝐵 Or 𝐴𝐵 Or ( 𝑏𝑓 ) ) )
37 34 35 36 sylc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐵 Or ( 𝑏𝑓 ) )
38 simpll2 ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → 𝐴 ⊆ Fin )
39 38 30 sseldd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( 𝑏𝑓 ) ∈ Fin )
40 finnisoeu ( ( 𝐵 Or ( 𝑏𝑓 ) ∧ ( 𝑏𝑓 ) ∈ Fin ) → ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) )
41 37 39 40 syl2anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) )
42 iotacl ( ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) } )
43 41 42 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) } )
44 iotaex ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ∈ V
45 isoeq1 ( 𝑎 = ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) → ( 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ↔ ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) )
46 isoeq1 ( = 𝑎 → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ↔ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) )
47 46 cbvabv { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) } = { 𝑎𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) }
48 44 45 47 elab2 ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) } ↔ ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) )
49 43 48 sylib ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) )
50 isof1o ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) : ( card ‘ ( 𝑏𝑓 ) ) –1-1-onto→ ( 𝑏𝑓 ) )
51 f1of ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) : ( card ‘ ( 𝑏𝑓 ) ) –1-1-onto→ ( 𝑏𝑓 ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) : ( card ‘ ( 𝑏𝑓 ) ) ⟶ ( 𝑏𝑓 ) )
52 49 50 51 3syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) : ( card ‘ ( 𝑏𝑓 ) ) ⟶ ( 𝑏𝑓 ) )
53 52 ffvelrnda ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) ∈ ( 𝑏𝑓 ) )
54 33 53 sseldd ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) ∈ 𝐴 )
55 simprl ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → 𝑎 𝐴 )
56 55 ad2antrr ( ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) ∧ ¬ 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ) → 𝑎 𝐴 )
57 54 56 ifclda ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑓 ∈ ω ∧ 𝑔 ∈ ω ) ) → if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ 𝐴 )
58 57 ralrimivva ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ∀ 𝑓 ∈ ω ∀ 𝑔 ∈ ω if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ 𝐴 )
59 eqid ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) = ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) )
60 59 fmpo ( ∀ 𝑓 ∈ ω ∀ 𝑔 ∈ ω if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ∈ 𝐴 ↔ ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ 𝐴 )
61 58 60 sylib ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ 𝐴 )
62 eluni ( 𝑐 𝐴 ↔ ∃ 𝑖 ( 𝑐𝑖𝑖𝐴 ) )
63 simplrr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → 𝑏 : ω –onto𝐴 )
64 simprr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → 𝑖𝐴 )
65 foelrn ( ( 𝑏 : ω –onto𝐴𝑖𝐴 ) → ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏𝑗 ) )
66 63 64 65 syl2anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏𝑗 ) )
67 simprrl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑗 ∈ ω )
68 ordom Ord ω
69 simpll2 ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝐴 ⊆ Fin )
70 simplrr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑏 : ω –onto𝐴 )
71 70 27 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑏 : ω ⟶ 𝐴 )
72 71 67 ffvelrnd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( 𝑏𝑗 ) ∈ 𝐴 )
73 69 72 sseldd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( 𝑏𝑗 ) ∈ Fin )
74 ficardom ( ( 𝑏𝑗 ) ∈ Fin → ( card ‘ ( 𝑏𝑗 ) ) ∈ ω )
75 73 74 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( card ‘ ( 𝑏𝑗 ) ) ∈ ω )
76 ordelss ( ( Ord ω ∧ ( card ‘ ( 𝑏𝑗 ) ) ∈ ω ) → ( card ‘ ( 𝑏𝑗 ) ) ⊆ ω )
77 68 75 76 sylancr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( card ‘ ( 𝑏𝑗 ) ) ⊆ ω )
78 elssuni ( ( 𝑏𝑗 ) ∈ 𝐴 → ( 𝑏𝑗 ) ⊆ 𝐴 )
79 72 78 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( 𝑏𝑗 ) ⊆ 𝐴 )
80 simpll3 ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝐵 Or 𝐴 )
81 soss ( ( 𝑏𝑗 ) ⊆ 𝐴 → ( 𝐵 Or 𝐴𝐵 Or ( 𝑏𝑗 ) ) )
82 79 80 81 sylc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝐵 Or ( 𝑏𝑗 ) )
83 finnisoeu ( ( 𝐵 Or ( 𝑏𝑗 ) ∧ ( 𝑏𝑗 ) ∈ Fin ) → ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) )
84 82 73 83 syl2anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) )
85 iotacl ( ∃! Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) } )
86 84 85 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) } )
87 iotaex ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ∈ V
88 isoeq1 ( 𝑎 = ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) → ( 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ↔ ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
89 isoeq1 ( = 𝑎 → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ↔ 𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
90 89 cbvabv { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) } = { 𝑎𝑎 Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) }
91 87 88 90 elab2 ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ∈ { Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) } ↔ ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) )
92 86 91 sylib ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) )
93 isof1o ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( card ‘ ( 𝑏𝑗 ) ) –1-1-onto→ ( 𝑏𝑗 ) )
94 92 93 syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( card ‘ ( 𝑏𝑗 ) ) –1-1-onto→ ( 𝑏𝑗 ) )
95 f1ocnv ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( card ‘ ( 𝑏𝑗 ) ) –1-1-onto→ ( 𝑏𝑗 ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( 𝑏𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏𝑗 ) ) )
96 f1of ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( 𝑏𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏𝑗 ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( 𝑏𝑗 ) ⟶ ( card ‘ ( 𝑏𝑗 ) ) )
97 94 95 96 3syl ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( 𝑏𝑗 ) ⟶ ( card ‘ ( 𝑏𝑗 ) ) )
98 simprll ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑐𝑖 )
99 simprrr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑖 = ( 𝑏𝑗 ) )
100 98 99 eleqtrd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑐 ∈ ( 𝑏𝑗 ) )
101 97 100 ffvelrnd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) )
102 77 101 sseldd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ω )
103 2fveq3 ( 𝑓 = 𝑗 → ( card ‘ ( 𝑏𝑓 ) ) = ( card ‘ ( 𝑏𝑗 ) ) )
104 103 eleq2d ( 𝑓 = 𝑗 → ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) ↔ 𝑔 ∈ ( card ‘ ( 𝑏𝑗 ) ) ) )
105 isoeq4 ( ( card ‘ ( 𝑏𝑓 ) ) = ( card ‘ ( 𝑏𝑗 ) ) → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ↔ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑓 ) ) ) )
106 103 105 syl ( 𝑓 = 𝑗 → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ↔ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑓 ) ) ) )
107 fveq2 ( 𝑓 = 𝑗 → ( 𝑏𝑓 ) = ( 𝑏𝑗 ) )
108 isoeq5 ( ( 𝑏𝑓 ) = ( 𝑏𝑗 ) → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑓 ) ) ↔ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
109 107 108 syl ( 𝑓 = 𝑗 → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑓 ) ) ↔ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
110 106 109 bitrd ( 𝑓 = 𝑗 → ( Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ↔ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
111 110 iotabidv ( 𝑓 = 𝑗 → ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) = ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) )
112 111 fveq1d ( 𝑓 = 𝑗 → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑔 ) )
113 104 112 ifbieq1d ( 𝑓 = 𝑗 → if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) = if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑔 ) , 𝑎 ) )
114 eleq1 ( 𝑔 = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) → ( 𝑔 ∈ ( card ‘ ( 𝑏𝑗 ) ) ↔ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) ) )
115 fveq2 ( 𝑔 = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑔 ) = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) )
116 114 115 ifbieq1d ( 𝑔 = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) → if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑔 ) , 𝑎 ) = if ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) )
117 fvex ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) ∈ V
118 vex 𝑎 ∈ V
119 117 118 ifex if ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) ∈ V
120 113 116 59 119 ovmpo ( ( 𝑗 ∈ ω ∧ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ω ) → ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) = if ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) )
121 67 102 120 syl2anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) = if ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) )
122 101 iftrued ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → if ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ( card ‘ ( 𝑏𝑗 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) , 𝑎 ) = ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) )
123 f1ocnvfv2 ( ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) : ( card ‘ ( 𝑏𝑗 ) ) –1-1-onto→ ( 𝑏𝑗 ) ∧ 𝑐 ∈ ( 𝑏𝑗 ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) = 𝑐 )
124 94 100 123 syl2anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) = 𝑐 )
125 121 122 124 3eqtrrd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → 𝑐 = ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) )
126 rspceov ( ( 𝑗 ∈ ω ∧ ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ∈ ω ∧ 𝑐 = ( 𝑗 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑗 ) ) , ( 𝑏𝑗 ) ) ) ‘ 𝑐 ) ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) )
127 67 102 125 126 syl3anc ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( ( 𝑐𝑖𝑖𝐴 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) )
128 127 expr ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = ( 𝑏𝑗 ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
129 128 expd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → ( 𝑗 ∈ ω → ( 𝑖 = ( 𝑏𝑗 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) ) )
130 129 rexlimdv ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → ( ∃ 𝑗 ∈ ω 𝑖 = ( 𝑏𝑗 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
131 66 130 mpd ( ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) ∧ ( 𝑐𝑖𝑖𝐴 ) ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) )
132 131 ex ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ( ( 𝑐𝑖𝑖𝐴 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
133 132 exlimdv ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ( ∃ 𝑖 ( 𝑐𝑖𝑖𝐴 ) → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
134 62 133 syl5bi ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ( 𝑐 𝐴 → ∃ 𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
135 134 ralrimiv ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ∀ 𝑐 𝐴𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) )
136 foov ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto 𝐴 ↔ ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) ⟶ 𝐴 ∧ ∀ 𝑐 𝐴𝑑 ∈ ω ∃ 𝑒 ∈ ω 𝑐 = ( 𝑑 ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) 𝑒 ) ) )
137 61 135 136 sylanbrc ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto 𝐴 )
138 fodomnum ( ( ω × ω ) ∈ dom card → ( ( 𝑓 ∈ ω , 𝑔 ∈ ω ↦ if ( 𝑔 ∈ ( card ‘ ( 𝑏𝑓 ) ) , ( ( ℩ Isom E , 𝐵 ( ( card ‘ ( 𝑏𝑓 ) ) , ( 𝑏𝑓 ) ) ) ‘ 𝑔 ) , 𝑎 ) ) : ( ω × ω ) –onto 𝐴 𝐴 ≼ ( ω × ω ) ) )
139 25 137 138 mpsyl ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → 𝐴 ≼ ( ω × ω ) )
140 xpomen ( ω × ω ) ≈ ω
141 domentr ( ( 𝐴 ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → 𝐴 ≼ ω )
142 139 140 141 sylancl ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ ( 𝑎 𝐴𝑏 : ω –onto𝐴 ) ) → 𝐴 ≼ ω )
143 142 expr ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → ( 𝑏 : ω –onto𝐴 𝐴 ≼ ω ) )
144 143 exlimdv ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → ( ∃ 𝑏 𝑏 : ω –onto𝐴 𝐴 ≼ ω ) )
145 20 144 mpd ( ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) ∧ 𝑎 𝐴 ) → 𝐴 ≼ ω )
146 145 expcom ( 𝑎 𝐴 → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω ) )
147 146 exlimiv ( ∃ 𝑎 𝑎 𝐴 → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω ) )
148 6 147 sylbi ( 𝐴 ≠ ∅ → ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω ) )
149 5 148 pm2.61ine ( ( 𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or 𝐴 ) → 𝐴 ≼ ω )