| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omex | ⊢ ω  ∈  V | 
						
							| 2 | 1 | 0dom | ⊢ ∅  ≼  ω | 
						
							| 3 |  | breq1 | ⊢ ( ∪  𝐴  =  ∅  →  ( ∪  𝐴  ≼  ω  ↔  ∅  ≼  ω ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( ∪  𝐴  =  ∅  →  ∪  𝐴  ≼  ω ) | 
						
							| 5 | 4 | a1d | ⊢ ( ∪  𝐴  =  ∅  →  ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 6 |  | n0 | ⊢ ( ∪  𝐴  ≠  ∅  ↔  ∃ 𝑎 𝑎  ∈  ∪  𝐴 ) | 
						
							| 7 |  | ne0i | ⊢ ( 𝑎  ∈  ∪  𝐴  →  ∪  𝐴  ≠  ∅ ) | 
						
							| 8 |  | unieq | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∪  ∅ ) | 
						
							| 9 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∅ ) | 
						
							| 11 | 10 | necon3i | ⊢ ( ∪  𝐴  ≠  ∅  →  𝐴  ≠  ∅ ) | 
						
							| 12 | 7 11 | syl | ⊢ ( 𝑎  ∈  ∪  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  𝐴  ≠  ∅ ) | 
						
							| 14 |  | simpl1 | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  𝐴  ≼  ω ) | 
						
							| 15 |  | ctex | ⊢ ( 𝐴  ≼  ω  →  𝐴  ∈  V ) | 
						
							| 16 |  | 0sdomg | ⊢ ( 𝐴  ∈  V  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 17 | 14 15 16 | 3syl | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 18 | 13 17 | mpbird | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ∅  ≺  𝐴 ) | 
						
							| 19 |  | fodomr | ⊢ ( ( ∅  ≺  𝐴  ∧  𝐴  ≼  ω )  →  ∃ 𝑏 𝑏 : ω –onto→ 𝐴 ) | 
						
							| 20 | 18 14 19 | syl2anc | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ∃ 𝑏 𝑏 : ω –onto→ 𝐴 ) | 
						
							| 21 |  | omelon | ⊢ ω  ∈  On | 
						
							| 22 |  | onenon | ⊢ ( ω  ∈  On  →  ω  ∈  dom  card ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ ω  ∈  dom  card | 
						
							| 24 |  | xpnum | ⊢ ( ( ω  ∈  dom  card  ∧  ω  ∈  dom  card )  →  ( ω  ×  ω )  ∈  dom  card ) | 
						
							| 25 | 23 23 24 | mp2an | ⊢ ( ω  ×  ω )  ∈  dom  card | 
						
							| 26 |  | simplrr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝑏 : ω –onto→ 𝐴 ) | 
						
							| 27 |  | fof | ⊢ ( 𝑏 : ω –onto→ 𝐴  →  𝑏 : ω ⟶ 𝐴 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝑏 : ω ⟶ 𝐴 ) | 
						
							| 29 |  | simprl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝑓  ∈  ω ) | 
						
							| 30 | 28 29 | ffvelcdmd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( 𝑏 ‘ 𝑓 )  ∈  𝐴 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  ∧  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) )  →  ( 𝑏 ‘ 𝑓 )  ∈  𝐴 ) | 
						
							| 32 |  | elssuni | ⊢ ( ( 𝑏 ‘ 𝑓 )  ∈  𝐴  →  ( 𝑏 ‘ 𝑓 )  ⊆  ∪  𝐴 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  ∧  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) )  →  ( 𝑏 ‘ 𝑓 )  ⊆  ∪  𝐴 ) | 
						
							| 34 | 30 32 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( 𝑏 ‘ 𝑓 )  ⊆  ∪  𝐴 ) | 
						
							| 35 |  | simpll3 | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝐵  Or  ∪  𝐴 ) | 
						
							| 36 |  | soss | ⊢ ( ( 𝑏 ‘ 𝑓 )  ⊆  ∪  𝐴  →  ( 𝐵  Or  ∪  𝐴  →  𝐵  Or  ( 𝑏 ‘ 𝑓 ) ) ) | 
						
							| 37 | 34 35 36 | sylc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝐵  Or  ( 𝑏 ‘ 𝑓 ) ) | 
						
							| 38 |  | simpll2 | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  𝐴  ⊆  Fin ) | 
						
							| 39 | 38 30 | sseldd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( 𝑏 ‘ 𝑓 )  ∈  Fin ) | 
						
							| 40 |  | finnisoeu | ⊢ ( ( 𝐵  Or  ( 𝑏 ‘ 𝑓 )  ∧  ( 𝑏 ‘ 𝑓 )  ∈  Fin )  →  ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) | 
						
							| 41 | 37 39 40 | syl2anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) | 
						
							| 42 |  | iotacl | ⊢ ( ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) } ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) } ) | 
						
							| 44 |  | iotaex | ⊢ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  ∈  V | 
						
							| 45 |  | isoeq1 | ⊢ ( 𝑎  =  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  →  ( 𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ) | 
						
							| 46 |  | isoeq1 | ⊢ ( ℎ  =  𝑎  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ) | 
						
							| 47 | 46 | cbvabv | ⊢ { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) }  =  { 𝑎  ∣  𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) } | 
						
							| 48 | 44 45 47 | elab2 | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) }  ↔  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) | 
						
							| 49 | 43 48 | sylib | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) | 
						
							| 50 |  | isof1o | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑓 ) ) | 
						
							| 51 |  | f1of | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑓 )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ⟶ ( 𝑏 ‘ 𝑓 ) ) | 
						
							| 52 | 49 50 51 | 3syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ⟶ ( 𝑏 ‘ 𝑓 ) ) | 
						
							| 53 | 52 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  ∧  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) )  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 )  ∈  ( 𝑏 ‘ 𝑓 ) ) | 
						
							| 54 | 33 53 | sseldd | ⊢ ( ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  ∧  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) )  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 )  ∈  ∪  𝐴 ) | 
						
							| 55 |  | simprl | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  𝑎  ∈  ∪  𝐴 ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  ∧  ¬  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) )  →  𝑎  ∈  ∪  𝐴 ) | 
						
							| 57 | 54 56 | ifclda | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑓  ∈  ω  ∧  𝑔  ∈  ω ) )  →  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 )  ∈  ∪  𝐴 ) | 
						
							| 58 | 57 | ralrimivva | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ∀ 𝑓  ∈  ω ∀ 𝑔  ∈  ω if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 )  ∈  ∪  𝐴 ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) )  =  ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) | 
						
							| 60 | 59 | fmpo | ⊢ ( ∀ 𝑓  ∈  ω ∀ 𝑔  ∈  ω if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 )  ∈  ∪  𝐴  ↔  ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) ⟶ ∪  𝐴 ) | 
						
							| 61 | 58 60 | sylib | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) ⟶ ∪  𝐴 ) | 
						
							| 62 |  | eluni | ⊢ ( 𝑐  ∈  ∪  𝐴  ↔  ∃ 𝑖 ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) ) | 
						
							| 63 |  | simplrr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  𝑏 : ω –onto→ 𝐴 ) | 
						
							| 64 |  | simprr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  𝑖  ∈  𝐴 ) | 
						
							| 65 |  | foelrn | ⊢ ( ( 𝑏 : ω –onto→ 𝐴  ∧  𝑖  ∈  𝐴 )  →  ∃ 𝑗  ∈  ω 𝑖  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 66 | 63 64 65 | syl2anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  ∃ 𝑗  ∈  ω 𝑖  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 67 |  | simprrl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑗  ∈  ω ) | 
						
							| 68 |  | ordom | ⊢ Ord  ω | 
						
							| 69 |  | simpll2 | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝐴  ⊆  Fin ) | 
						
							| 70 |  | simplrr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑏 : ω –onto→ 𝐴 ) | 
						
							| 71 | 70 27 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑏 : ω ⟶ 𝐴 ) | 
						
							| 72 | 71 67 | ffvelcdmd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( 𝑏 ‘ 𝑗 )  ∈  𝐴 ) | 
						
							| 73 | 69 72 | sseldd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( 𝑏 ‘ 𝑗 )  ∈  Fin ) | 
						
							| 74 |  | ficardom | ⊢ ( ( 𝑏 ‘ 𝑗 )  ∈  Fin  →  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ∈  ω ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ∈  ω ) | 
						
							| 76 |  | ordelss | ⊢ ( ( Ord  ω  ∧  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ∈  ω )  →  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ⊆  ω ) | 
						
							| 77 | 68 75 76 | sylancr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ⊆  ω ) | 
						
							| 78 |  | elssuni | ⊢ ( ( 𝑏 ‘ 𝑗 )  ∈  𝐴  →  ( 𝑏 ‘ 𝑗 )  ⊆  ∪  𝐴 ) | 
						
							| 79 | 72 78 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( 𝑏 ‘ 𝑗 )  ⊆  ∪  𝐴 ) | 
						
							| 80 |  | simpll3 | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝐵  Or  ∪  𝐴 ) | 
						
							| 81 |  | soss | ⊢ ( ( 𝑏 ‘ 𝑗 )  ⊆  ∪  𝐴  →  ( 𝐵  Or  ∪  𝐴  →  𝐵  Or  ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 82 | 79 80 81 | sylc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝐵  Or  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 83 |  | finnisoeu | ⊢ ( ( 𝐵  Or  ( 𝑏 ‘ 𝑗 )  ∧  ( 𝑏 ‘ 𝑗 )  ∈  Fin )  →  ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 84 | 82 73 83 | syl2anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 85 |  | iotacl | ⊢ ( ∃! ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) } ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) } ) | 
						
							| 87 |  | iotaex | ⊢ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  ∈  V | 
						
							| 88 |  | isoeq1 | ⊢ ( 𝑎  =  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  →  ( 𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) )  ↔  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 89 |  | isoeq1 | ⊢ ( ℎ  =  𝑎  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) )  ↔  𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 90 | 89 | cbvabv | ⊢ { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) }  =  { 𝑎  ∣  𝑎  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) } | 
						
							| 91 | 87 88 90 | elab2 | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  ∈  { ℎ  ∣  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) }  ↔  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 92 | 86 91 | sylib | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 93 |  | isof1o | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) )  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 94 | 92 93 | syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 95 |  | f1ocnv | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 )  →  ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 96 |  | f1of | ⊢ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) –1-1-onto→ ( card ‘ ( 𝑏 ‘ 𝑗 ) )  →  ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) ⟶ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 97 | 94 95 96 | 3syl | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( 𝑏 ‘ 𝑗 ) ⟶ ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 98 |  | simprll | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑐  ∈  𝑖 ) | 
						
							| 99 |  | simprrr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 100 | 98 99 | eleqtrd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑐  ∈  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 101 | 97 100 | ffvelcdmd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 102 | 77 101 | sseldd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ω ) | 
						
							| 103 |  | 2fveq3 | ⊢ ( 𝑓  =  𝑗  →  ( card ‘ ( 𝑏 ‘ 𝑓 ) )  =  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) | 
						
							| 104 | 103 | eleq2d | ⊢ ( 𝑓  =  𝑗  →  ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) )  ↔  𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 105 |  | isoeq4 | ⊢ ( ( card ‘ ( 𝑏 ‘ 𝑓 ) )  =  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ) | 
						
							| 106 | 103 105 | syl | ⊢ ( 𝑓  =  𝑗  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ) | 
						
							| 107 |  | fveq2 | ⊢ ( 𝑓  =  𝑗  →  ( 𝑏 ‘ 𝑓 )  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 108 |  | isoeq5 | ⊢ ( ( 𝑏 ‘ 𝑓 )  =  ( 𝑏 ‘ 𝑗 )  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( 𝑓  =  𝑗  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 110 | 106 109 | bitrd | ⊢ ( 𝑓  =  𝑗  →  ( ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) )  ↔  ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 111 | 110 | iotabidv | ⊢ ( 𝑓  =  𝑗  →  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) )  =  ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 112 | 111 | fveq1d | ⊢ ( 𝑓  =  𝑗  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 )  =  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) ) | 
						
							| 113 | 104 112 | ifbieq1d | ⊢ ( 𝑓  =  𝑗  →  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 )  =  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) | 
						
							| 114 |  | eleq1 | ⊢ ( 𝑔  =  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  →  ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) )  ↔  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ) ) | 
						
							| 115 |  | fveq2 | ⊢ ( 𝑔  =  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 )  =  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) | 
						
							| 116 | 114 115 | ifbieq1d | ⊢ ( 𝑔  =  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  →  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑔 ) ,  𝑎 )  =  if ( ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ,  𝑎 ) ) | 
						
							| 117 |  | fvex | ⊢ ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) )  ∈  V | 
						
							| 118 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 119 | 117 118 | ifex | ⊢ if ( ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ,  𝑎 )  ∈  V | 
						
							| 120 | 113 116 59 119 | ovmpo | ⊢ ( ( 𝑗  ∈  ω  ∧  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ω )  →  ( 𝑗 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) )  =  if ( ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ,  𝑎 ) ) | 
						
							| 121 | 67 102 120 | syl2anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( 𝑗 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) )  =  if ( ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ,  𝑎 ) ) | 
						
							| 122 | 101 | iftrued | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  if ( ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ,  𝑎 )  =  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) | 
						
							| 123 |  | f1ocnvfv2 | ⊢ ( ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) : ( card ‘ ( 𝑏 ‘ 𝑗 ) ) –1-1-onto→ ( 𝑏 ‘ 𝑗 )  ∧  𝑐  ∈  ( 𝑏 ‘ 𝑗 ) )  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) )  =  𝑐 ) | 
						
							| 124 | 94 100 123 | syl2anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) )  =  𝑐 ) | 
						
							| 125 | 121 122 124 | 3eqtrrd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  𝑐  =  ( 𝑗 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) ) | 
						
							| 126 |  | rspceov | ⊢ ( ( 𝑗  ∈  ω  ∧  ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 )  ∈  ω  ∧  𝑐  =  ( 𝑗 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) ( ◡ ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑗 ) ) ,  ( 𝑏 ‘ 𝑗 ) ) ) ‘ 𝑐 ) ) )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) | 
						
							| 127 | 67 102 125 126 | syl3anc | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  ∧  ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) ) ) )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) | 
						
							| 128 | 127 | expr | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  ( ( 𝑗  ∈  ω  ∧  𝑖  =  ( 𝑏 ‘ 𝑗 ) )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 129 | 128 | expd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  ( 𝑗  ∈  ω  →  ( 𝑖  =  ( 𝑏 ‘ 𝑗 )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) ) | 
						
							| 130 | 129 | rexlimdv | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  ( ∃ 𝑗  ∈  ω 𝑖  =  ( 𝑏 ‘ 𝑗 )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 131 | 66 130 | mpd | ⊢ ( ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  ∧  ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 ) )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) | 
						
							| 132 | 131 | ex | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ( ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 133 | 132 | exlimdv | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ( ∃ 𝑖 ( 𝑐  ∈  𝑖  ∧  𝑖  ∈  𝐴 )  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 134 | 62 133 | biimtrid | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ( 𝑐  ∈  ∪  𝐴  →  ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 135 | 134 | ralrimiv | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ∀ 𝑐  ∈  ∪  𝐴 ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) | 
						
							| 136 |  | foov | ⊢ ( ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) –onto→ ∪  𝐴  ↔  ( ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) ⟶ ∪  𝐴  ∧  ∀ 𝑐  ∈  ∪  𝐴 ∃ 𝑑  ∈  ω ∃ 𝑒  ∈  ω 𝑐  =  ( 𝑑 ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) 𝑒 ) ) ) | 
						
							| 137 | 61 135 136 | sylanbrc | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) –onto→ ∪  𝐴 ) | 
						
							| 138 |  | fodomnum | ⊢ ( ( ω  ×  ω )  ∈  dom  card  →  ( ( 𝑓  ∈  ω ,  𝑔  ∈  ω  ↦  if ( 𝑔  ∈  ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( ( ℩ ℎ ℎ  Isom   E  ,  𝐵 ( ( card ‘ ( 𝑏 ‘ 𝑓 ) ) ,  ( 𝑏 ‘ 𝑓 ) ) ) ‘ 𝑔 ) ,  𝑎 ) ) : ( ω  ×  ω ) –onto→ ∪  𝐴  →  ∪  𝐴  ≼  ( ω  ×  ω ) ) ) | 
						
							| 139 | 25 137 138 | mpsyl | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ∪  𝐴  ≼  ( ω  ×  ω ) ) | 
						
							| 140 |  | xpomen | ⊢ ( ω  ×  ω )  ≈  ω | 
						
							| 141 |  | domentr | ⊢ ( ( ∪  𝐴  ≼  ( ω  ×  ω )  ∧  ( ω  ×  ω )  ≈  ω )  →  ∪  𝐴  ≼  ω ) | 
						
							| 142 | 139 140 141 | sylancl | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  ( 𝑎  ∈  ∪  𝐴  ∧  𝑏 : ω –onto→ 𝐴 ) )  →  ∪  𝐴  ≼  ω ) | 
						
							| 143 | 142 | expr | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ( 𝑏 : ω –onto→ 𝐴  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 144 | 143 | exlimdv | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ( ∃ 𝑏 𝑏 : ω –onto→ 𝐴  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 145 | 20 144 | mpd | ⊢ ( ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  ∧  𝑎  ∈  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) | 
						
							| 146 | 145 | expcom | ⊢ ( 𝑎  ∈  ∪  𝐴  →  ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 147 | 146 | exlimiv | ⊢ ( ∃ 𝑎 𝑎  ∈  ∪  𝐴  →  ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 148 | 6 147 | sylbi | ⊢ ( ∪  𝐴  ≠  ∅  →  ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) ) | 
						
							| 149 | 5 148 | pm2.61ine | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐴  ⊆  Fin  ∧  𝐵  Or  ∪  𝐴 )  →  ∪  𝐴  ≼  ω ) |