Step |
Hyp |
Ref |
Expression |
1 |
|
iunfo.1 |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
2 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
3 |
|
fof |
⊢ ( 2nd : V –onto→ V → 2nd : V ⟶ V ) |
4 |
|
ffn |
⊢ ( 2nd : V ⟶ V → 2nd Fn V ) |
5 |
2 3 4
|
mp2b |
⊢ 2nd Fn V |
6 |
|
ssv |
⊢ 𝑇 ⊆ V |
7 |
|
fnssres |
⊢ ( ( 2nd Fn V ∧ 𝑇 ⊆ V ) → ( 2nd ↾ 𝑇 ) Fn 𝑇 ) |
8 |
5 6 7
|
mp2an |
⊢ ( 2nd ↾ 𝑇 ) Fn 𝑇 |
9 |
|
df-ima |
⊢ ( 2nd “ 𝑇 ) = ran ( 2nd ↾ 𝑇 ) |
10 |
1
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑇 ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
11 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
12 |
10 11
|
bitri |
⊢ ( 𝑧 ∈ 𝑇 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) ) |
13 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
14 |
|
eleq1 |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑦 → ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
15 |
13 14
|
syl5ib |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑦 → ( 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → 𝑦 ∈ 𝐵 ) ) |
16 |
15
|
reximdv |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑦 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( { 𝑥 } × 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
17 |
12 16
|
syl5bi |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑦 → ( 𝑧 ∈ 𝑇 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝑧 ∈ 𝑇 ∧ ( 2nd ‘ 𝑧 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
19 |
18
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
20 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
21 |
1 20
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑇 |
22 |
|
nfv |
⊢ Ⅎ 𝑥 ( 2nd ‘ 𝑧 ) = 𝑦 |
23 |
21 22
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 |
24 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑥 } × 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } × 𝐵 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
26 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
27 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
28 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ 𝐵 ) ) |
29 |
27 28
|
mpbiran |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑥 } × 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) |
30 |
26 29
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑥 } × 𝐵 ) ) |
31 |
25 30
|
sseldd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
32 |
31 1
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑇 ) |
33 |
|
vex |
⊢ 𝑥 ∈ V |
34 |
|
vex |
⊢ 𝑦 ∈ V |
35 |
33 34
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 |
36 |
|
fveqeq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑧 ) = 𝑦 ↔ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) ) |
37 |
36
|
rspcev |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑇 ∧ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) → ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) |
38 |
32 35 37
|
sylancl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) |
39 |
38
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) ) |
40 |
23 39
|
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) |
41 |
19 40
|
impbii |
⊢ ( ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
42 |
|
fvelimab |
⊢ ( ( 2nd Fn V ∧ 𝑇 ⊆ V ) → ( 𝑦 ∈ ( 2nd “ 𝑇 ) ↔ ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) ) |
43 |
5 6 42
|
mp2an |
⊢ ( 𝑦 ∈ ( 2nd “ 𝑇 ) ↔ ∃ 𝑧 ∈ 𝑇 ( 2nd ‘ 𝑧 ) = 𝑦 ) |
44 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
45 |
41 43 44
|
3bitr4i |
⊢ ( 𝑦 ∈ ( 2nd “ 𝑇 ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
46 |
45
|
eqriv |
⊢ ( 2nd “ 𝑇 ) = ∪ 𝑥 ∈ 𝐴 𝐵 |
47 |
9 46
|
eqtr3i |
⊢ ran ( 2nd ↾ 𝑇 ) = ∪ 𝑥 ∈ 𝐴 𝐵 |
48 |
|
df-fo |
⊢ ( ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( ( 2nd ↾ 𝑇 ) Fn 𝑇 ∧ ran ( 2nd ↾ 𝑇 ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
49 |
8 47 48
|
mpbir2an |
⊢ ( 2nd ↾ 𝑇 ) : 𝑇 –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 |