Step |
Hyp |
Ref |
Expression |
1 |
|
df-sn |
⊢ { 𝑥 } = { 𝑦 ∣ 𝑦 = 𝑥 } |
2 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
3 |
2
|
abbii |
⊢ { 𝑦 ∣ 𝑦 = 𝑥 } = { 𝑦 ∣ 𝑥 = 𝑦 } |
4 |
1 3
|
eqtri |
⊢ { 𝑥 } = { 𝑦 ∣ 𝑥 = 𝑦 } |
5 |
4
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } = { 𝑦 ∣ 𝑥 = 𝑦 } ) |
6 |
5
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝑥 = 𝑦 } |
7 |
|
iunab |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝑥 = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑦 } |
8 |
|
risset |
⊢ ( 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑦 ) |
9 |
8
|
abbii |
⊢ { 𝑦 ∣ 𝑦 ∈ 𝐴 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑦 } |
10 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ 𝐴 } = 𝐴 |
11 |
7 9 10
|
3eqtr2i |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝑥 = 𝑦 } = 𝐴 |
12 |
6 11
|
eqtri |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |