Metamath Proof Explorer


Theorem iunid

Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005)

Ref Expression
Assertion iunid 𝑥𝐴 { 𝑥 } = 𝐴

Proof

Step Hyp Ref Expression
1 df-sn { 𝑥 } = { 𝑦𝑦 = 𝑥 }
2 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
3 2 abbii { 𝑦𝑦 = 𝑥 } = { 𝑦𝑥 = 𝑦 }
4 1 3 eqtri { 𝑥 } = { 𝑦𝑥 = 𝑦 }
5 4 a1i ( 𝑥𝐴 → { 𝑥 } = { 𝑦𝑥 = 𝑦 } )
6 5 iuneq2i 𝑥𝐴 { 𝑥 } = 𝑥𝐴 { 𝑦𝑥 = 𝑦 }
7 iunab 𝑥𝐴 { 𝑦𝑥 = 𝑦 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑥 = 𝑦 }
8 risset ( 𝑦𝐴 ↔ ∃ 𝑥𝐴 𝑥 = 𝑦 )
9 8 abbii { 𝑦𝑦𝐴 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑥 = 𝑦 }
10 abid2 { 𝑦𝑦𝐴 } = 𝐴
11 7 9 10 3eqtr2i 𝑥𝐴 { 𝑦𝑥 = 𝑦 } = 𝐴
12 6 11 eqtri 𝑥𝐴 { 𝑥 } = 𝐴