Metamath Proof Explorer


Theorem iuniin

Description: Law combining indexed union with indexed intersection. Eq. 14 in KuratowskiMostowski p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29 . (Contributed by NM, 17-Aug-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iuniin 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶

Proof

Step Hyp Ref Expression
1 r19.12 ( ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 → ∀ 𝑦𝐵𝑥𝐴 𝑧𝐶 )
2 eliin ( 𝑧 ∈ V → ( 𝑧 𝑦𝐵 𝐶 ↔ ∀ 𝑦𝐵 𝑧𝐶 ) )
3 2 elv ( 𝑧 𝑦𝐵 𝐶 ↔ ∀ 𝑦𝐵 𝑧𝐶 )
4 3 rexbii ( ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃ 𝑥𝐴𝑦𝐵 𝑧𝐶 )
5 eliun ( 𝑧 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑧𝐶 )
6 5 ralbii ( ∀ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∀ 𝑦𝐵𝑥𝐴 𝑧𝐶 )
7 1 4 6 3imtr4i ( ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 → ∀ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 )
8 eliun ( 𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃ 𝑥𝐴 𝑧 𝑦𝐵 𝐶 )
9 eliin ( 𝑧 ∈ V → ( 𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 ) )
10 9 elv ( 𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀ 𝑦𝐵 𝑧 𝑥𝐴 𝐶 )
11 7 8 10 3imtr4i ( 𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶 )
12 11 ssriv 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶