Metamath Proof Explorer


Theorem iunin1f

Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use uniiun to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004) (Revised by Thierry Arnoux, 2-May-2020)

Ref Expression
Hypothesis iunin1f.1 𝑥 𝐶
Assertion iunin1f 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunin1f.1 𝑥 𝐶
2 1 nfcri 𝑥 𝑦𝐶
3 2 r19.41 ( ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
4 elin ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
5 4 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
6 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
7 6 anbi1i ( ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
8 3 5 7 3bitr4i ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
9 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
10 elin ( 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
11 8 9 10 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) )
12 11 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 )