Step |
Hyp |
Ref |
Expression |
1 |
|
iunin1f.1 |
⊢ Ⅎ 𝑥 𝐶 |
2 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
3 |
2
|
r19.41 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
4 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
5 |
4
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
6 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
8 |
3 5 7
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
9 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
10 |
|
elin |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) ) |
12 |
11
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) |