Metamath Proof Explorer


Theorem iunin2

Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use uniiun to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion iunin2 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 r19.42v ( ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝑦𝐶 ) )
2 elin ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
3 2 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
4 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
5 4 anbi2i ( ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝑦𝐶 ) )
6 1 3 5 3bitr4i ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) )
7 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
8 elin ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) )
9 6 7 8 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) )
10 9 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )