Step |
Hyp |
Ref |
Expression |
1 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
2 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
3 |
2
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
4 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
6 |
1 3 5
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
7 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) |
8 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
10 |
9
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) |