Step |
Hyp |
Ref |
Expression |
1 |
|
iunincfi.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
iunincfi.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
3 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ( 𝑀 ... 𝑁 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
4 |
3
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) → ∃ 𝑛 ∈ ( 𝑀 ... 𝑁 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ( 𝑀 ... 𝑁 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
6 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → 𝜑 ) |
9 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
|
fzoss1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑛 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → ( 𝑛 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ 𝑁 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) |
14 |
12 13
|
sseldd |
⊢ ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) |
16 |
|
eleq1w |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ↔ 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
19 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
20 |
18 19
|
sseq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
21 |
17 20
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ) |
22 |
21 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
23 |
8 15 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑚 ∈ ( 𝑛 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
24 |
7 23
|
ssinc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑁 ) ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑁 ) ) |
26 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) |
27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) |
28 |
27
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) → 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
29 |
28
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( 𝑀 ... 𝑁 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) → 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
30 |
29
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ( 𝑀 ... 𝑁 ) 𝑥 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) |
31 |
5 30
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) |
33 |
|
dfss3 |
⊢ ( ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑁 ) ↔ ∀ 𝑥 ∈ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) 𝑥 ∈ ( 𝐹 ‘ 𝑁 ) ) |
34 |
32 33
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑁 ) ) |
35 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
36 |
1 35
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑁 ) ) |
38 |
37
|
ssiun2s |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑁 ) ⊆ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ) |
39 |
36 38
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ⊆ ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) ) |
40 |
34 39
|
eqssd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑁 ) ) |