Metamath Proof Explorer


Theorem iunmapdisj

Description: The union U_ n e. C ( A ^m n ) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion iunmapdisj ∃* 𝑛𝐶 𝐵 ∈ ( 𝐴m 𝑛 )

Proof

Step Hyp Ref Expression
1 moeq ∃* 𝑛 𝑛 = dom 𝐵
2 elmapi ( 𝐵 ∈ ( 𝐴m 𝑛 ) → 𝐵 : 𝑛𝐴 )
3 fdm ( 𝐵 : 𝑛𝐴 → dom 𝐵 = 𝑛 )
4 3 eqcomd ( 𝐵 : 𝑛𝐴𝑛 = dom 𝐵 )
5 2 4 syl ( 𝐵 ∈ ( 𝐴m 𝑛 ) → 𝑛 = dom 𝐵 )
6 5 moimi ( ∃* 𝑛 𝑛 = dom 𝐵 → ∃* 𝑛 𝐵 ∈ ( 𝐴m 𝑛 ) )
7 1 6 ax-mp ∃* 𝑛 𝐵 ∈ ( 𝐴m 𝑛 )
8 7 moani ∃* 𝑛 ( 𝑛𝐶𝐵 ∈ ( 𝐴m 𝑛 ) )
9 df-rmo ( ∃* 𝑛𝐶 𝐵 ∈ ( 𝐴m 𝑛 ) ↔ ∃* 𝑛 ( 𝑛𝐶𝐵 ∈ ( 𝐴m 𝑛 ) ) )
10 8 9 mpbir ∃* 𝑛𝐶 𝐵 ∈ ( 𝐴m 𝑛 )