| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑘 𝐴  ∈  dom  vol | 
						
							| 2 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐴 | 
						
							| 3 | 2 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol | 
						
							| 4 |  | csbeq1a | ⊢ ( 𝑛  =  𝑘  →  𝐴  =  ⦋ 𝑘  /  𝑛 ⦌ 𝐴 ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  ∈  dom  vol  ↔  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 6 | 1 3 5 | cbvralw | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ↔  ∀ 𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 8 | 7 2 4 | cbviun | ⊢ ∪  𝑛  ∈  ℕ 𝐴  =  ∪  𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴 | 
						
							| 9 |  | csbeq1 | ⊢ ( 𝑘  =  𝑚  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  =  ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 10 | 9 | iundisj | ⊢ ∪  𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴  =  ∪  𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 11 | 8 10 | eqtri | ⊢ ∪  𝑛  ∈  ℕ 𝐴  =  ∪  𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 12 |  | difexg | ⊢ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  V ) | 
						
							| 13 | 12 | ralimi | ⊢ ( ∀ 𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ∀ 𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  V ) | 
						
							| 14 |  | dfiun2g | ⊢ ( ∀ 𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  V  →  ∪  𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  =  ∪  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ∀ 𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ∪  𝑘  ∈  ℕ ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  =  ∪  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } ) | 
						
							| 16 | 11 15 | eqtrid | ⊢ ( ∀ 𝑘  ∈  ℕ ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } ) | 
						
							| 17 | 6 16 | sylbi | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 19 | 18 | rnmpt | ⊢ ran  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) )  =  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } | 
						
							| 20 | 19 | unieqi | ⊢ ∪  ran  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) )  =  ∪  { 𝑦  ∣  ∃ 𝑘  ∈  ℕ 𝑦  =  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) } | 
						
							| 21 | 17 20 | eqtr4di | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  ran  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ) | 
						
							| 22 | 3 5 | rspc | ⊢ ( 𝑘  ∈  ℕ  →  ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 23 | 22 | impcom | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 24 |  | fzofi | ⊢ ( 1 ..^ 𝑘 )  ∈  Fin | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑚 𝐴  ∈  dom  vol | 
						
							| 26 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑚  /  𝑛 ⦌ 𝐴 | 
						
							| 27 | 26 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol | 
						
							| 28 |  | csbeq1a | ⊢ ( 𝑛  =  𝑚  →  𝐴  =  ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴  ∈  dom  vol  ↔  ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 30 | 25 27 29 | cbvralw | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ↔  ∀ 𝑚  ∈  ℕ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 31 |  | fzossnn | ⊢ ( 1 ..^ 𝑘 )  ⊆  ℕ | 
						
							| 32 |  | ssralv | ⊢ ( ( 1 ..^ 𝑘 )  ⊆  ℕ  →  ( ∀ 𝑚  ∈  ℕ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 33 | 31 32 | ax-mp | ⊢ ( ∀ 𝑚  ∈  ℕ ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol  →  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 34 | 30 33 | sylbi | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 36 |  | finiunmbl | ⊢ ( ( ( 1 ..^ 𝑘 )  ∈  Fin  ∧  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol )  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 37 | 24 35 36 | sylancr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 38 |  | difmbl | ⊢ ( ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∈  dom  vol  ∧  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  ∈  dom  vol )  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  dom  vol ) | 
						
							| 39 | 23 37 38 | syl2anc | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑘  ∈  ℕ )  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  dom  vol ) | 
						
							| 40 | 39 | fmpttd | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) : ℕ ⟶ dom  vol ) | 
						
							| 41 |  | csbeq1 | ⊢ ( 𝑖  =  𝑚  →  ⦋ 𝑖  /  𝑛 ⦌ 𝐴  =  ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 42 | 41 | iundisj2 | ⊢ Disj  𝑖  ∈  ℕ ( ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 43 |  | csbeq1 | ⊢ ( 𝑘  =  𝑖  →  ⦋ 𝑘  /  𝑛 ⦌ 𝐴  =  ⦋ 𝑖  /  𝑛 ⦌ 𝐴 ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 1 ..^ 𝑘 )  =  ( 1 ..^ 𝑖 ) ) | 
						
							| 45 | 44 | iuneq1d | ⊢ ( 𝑘  =  𝑖  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴  =  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) | 
						
							| 46 | 43 45 | difeq12d | ⊢ ( 𝑘  =  𝑖  →  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  =  ( ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑖  ∈  ℕ )  →  𝑖  ∈  ℕ ) | 
						
							| 48 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑖  /  𝑛 ⦌ 𝐴 | 
						
							| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∈  dom  vol | 
						
							| 50 |  | csbeq1a | ⊢ ( 𝑛  =  𝑖  →  𝐴  =  ⦋ 𝑖  /  𝑛 ⦌ 𝐴 ) | 
						
							| 51 | 50 | eleq1d | ⊢ ( 𝑛  =  𝑖  →  ( 𝐴  ∈  dom  vol  ↔  ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 52 | 49 51 | rspc | ⊢ ( 𝑖  ∈  ℕ  →  ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) ) | 
						
							| 53 | 52 | impcom | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑖  ∈  ℕ )  →  ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∈  dom  vol ) | 
						
							| 54 | 53 | difexd | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑖  ∈  ℕ )  →  ( ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 )  ∈  V ) | 
						
							| 55 | 18 46 47 54 | fvmptd3 | ⊢ ( ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ∧  𝑖  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 )  =  ( ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 56 | 55 | disjeq2dv | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ( Disj  𝑖  ∈  ℕ ( ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 )  ↔  Disj  𝑖  ∈  ℕ ( ⦋ 𝑖  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑖 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ) | 
						
							| 57 | 42 56 | mpbiri | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  Disj  𝑖  ∈  ℕ ( ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ‘ 𝑖 ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑦  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ‘ 𝑦 ) ) ) )  =  ( 𝑦  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 59 | 40 57 58 | voliunlem2 | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  ran  ( 𝑘  ∈  ℕ  ↦  ( ⦋ 𝑘  /  𝑛 ⦌ 𝐴  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ⦋ 𝑚  /  𝑛 ⦌ 𝐴 ) )  ∈  dom  vol ) | 
						
							| 60 | 21 59 | eqeltrd | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  ∈  dom  vol ) |