| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdom2 | ⊢ ( 𝐴  ≼  ℕ  ↔  ( 𝐴  ≺  ℕ  ∨  𝐴  ≈  ℕ ) ) | 
						
							| 2 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 3 |  | sdomentr | ⊢ ( ( 𝐴  ≺  ℕ  ∧  ℕ  ≈  ω )  →  𝐴  ≺  ω ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝐴  ≺  ℕ  →  𝐴  ≺  ω ) | 
						
							| 5 |  | isfinite | ⊢ ( 𝐴  ∈  Fin  ↔  𝐴  ≺  ω ) | 
						
							| 6 |  | finiunmbl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐴  ∈  Fin  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 8 | 5 7 | sylbir | ⊢ ( 𝐴  ≺  ω  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝐴  ≺  ℕ  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 10 |  | bren | ⊢ ( 𝐴  ≈  ℕ  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ℕ ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑛 𝑓 : 𝐴 –1-1-onto→ ℕ | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑛 ℕ | 
						
							| 13 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 | 
						
							| 14 | 13 | nfcri | ⊢ Ⅎ 𝑛 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 | 
						
							| 15 | 12 14 | nfrexw | ⊢ Ⅎ 𝑛 ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 | 
						
							| 16 |  | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  𝑓 : 𝐴 ⟶ ℕ ) | 
						
							| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓 ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 20 |  | f1ocnvfv1 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴 )  →  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  =  𝑛 ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  =  𝑛 ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑛  =  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 23 |  | csbeq1a | ⊢ ( 𝑛  =  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  →  𝐵  =  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝐵  =  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 25 | 19 24 | eleqtrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑛 )  →  ( ◡ 𝑓 ‘ 𝑘 )  =  ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 27 | 26 | csbeq1d | ⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑛 )  →  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  =  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 28 | 27 | eleq2d | ⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑛 )  →  ( 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ↔  𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 29 | 28 | rspcev | ⊢ ( ( ( 𝑓 ‘ 𝑛 )  ∈  ℕ  ∧  𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) )  /  𝑛 ⦌ 𝐵 )  →  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 30 | 18 25 29 | syl2anc | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑛  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 31 | 30 | 3exp | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( 𝑛  ∈  𝐴  →  ( 𝑥  ∈  𝐵  →  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 32 | 11 15 31 | rexlimd | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵  →  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 33 |  | f1ocnvdm | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑘  ∈  ℕ )  →  ( ◡ 𝑓 ‘ 𝑘 )  ∈  𝐴 ) | 
						
							| 34 |  | csbeq1a | ⊢ ( 𝑛  =  ( ◡ 𝑓 ‘ 𝑘 )  →  𝐵  =  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 35 | 34 | eleq2d | ⊢ ( 𝑛  =  ( ◡ 𝑓 ‘ 𝑘 )  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 36 | 14 35 | rspce | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑘 )  ∈  𝐴  ∧  𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 )  →  ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵 ) | 
						
							| 37 | 36 | ex | ⊢ ( ( ◡ 𝑓 ‘ 𝑘 )  ∈  𝐴  →  ( 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  →  ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵 ) ) | 
						
							| 38 | 33 37 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  →  ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵 ) ) | 
						
							| 39 | 38 | rexlimdva | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  →  ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵 ) ) | 
						
							| 40 | 32 39 | impbid | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵  ↔  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 41 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝐴 𝐵  ↔  ∃ 𝑛  ∈  𝐴 𝑥  ∈  𝐵 ) | 
						
							| 42 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ↔  ∃ 𝑘  ∈  ℕ 𝑥  ∈  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 43 | 40 41 42 | 3bitr4g | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝐴 𝐵  ↔  𝑥  ∈  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 44 | 43 | eqrdv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ∪  𝑛  ∈  𝐴 𝐵  =  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐴 𝐵  =  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵 ) | 
						
							| 46 |  | rspcsbela | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑘 )  ∈  𝐴  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 47 | 33 46 | sylan | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  𝑘  ∈  ℕ )  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 48 | 47 | an32s | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  ∧  𝑘  ∈  ℕ )  →  ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 49 | 48 | ralrimiva | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∀ 𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 50 |  | iunmbl | ⊢ ( ∀ 𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol  →  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑘  ∈  ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 )  /  𝑛 ⦌ 𝐵  ∈  dom  vol ) | 
						
							| 52 | 45 51 | eqeltrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) | 
						
							| 53 | 52 | ex | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 54 | 53 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ℕ  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 55 | 10 54 | sylbi | ⊢ ( 𝐴  ≈  ℕ  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 56 | 9 55 | jaoi | ⊢ ( ( 𝐴  ≺  ℕ  ∨  𝐴  ≈  ℕ )  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 57 | 1 56 | sylbi | ⊢ ( 𝐴  ≼  ℕ  →  ( ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( 𝐴  ≼  ℕ  ∧  ∀ 𝑛  ∈  𝐴 𝐵  ∈  dom  vol )  →  ∪  𝑛  ∈  𝐴 𝐵  ∈  dom  vol ) |