Metamath Proof Explorer


Theorem iunn0

Description: There is a nonempty class in an indexed collection B ( x ) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunn0 ( ∃ 𝑥𝐴 𝐵 ≠ ∅ ↔ 𝑥𝐴 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 rexcom4 ( ∃ 𝑥𝐴𝑦 𝑦𝐵 ↔ ∃ 𝑦𝑥𝐴 𝑦𝐵 )
2 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
3 2 exbii ( ∃ 𝑦 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑦𝑥𝐴 𝑦𝐵 )
4 1 3 bitr4i ( ∃ 𝑥𝐴𝑦 𝑦𝐵 ↔ ∃ 𝑦 𝑦 𝑥𝐴 𝐵 )
5 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
6 5 rexbii ( ∃ 𝑥𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑥𝐴𝑦 𝑦𝐵 )
7 n0 ( 𝑥𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 𝑥𝐴 𝐵 )
8 4 6 7 3bitr4i ( ∃ 𝑥𝐴 𝐵 ≠ ∅ ↔ 𝑥𝐴 𝐵 ≠ ∅ )