Step |
Hyp |
Ref |
Expression |
1 |
|
inocv.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
2 |
|
iunocv.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ) |
4 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
6 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
10 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
12 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
14 |
8 9 13
|
3bitr4i |
⊢ ( ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
15 |
3 14
|
anbi12i |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
16 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
18 |
|
eliin |
⊢ ( 𝑧 ∈ 𝑉 → ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ) ) |
19 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
21 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
22 |
2 19 20 21 1
|
elocv |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
23 |
|
3anan12 |
⊢ ( ( 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
24 |
22 23
|
bitri |
⊢ ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
25 |
24
|
baib |
⊢ ( 𝑧 ∈ 𝑉 → ( 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑧 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 𝑧 ∈ ( ⊥ ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
27 |
18 26
|
bitr2d |
⊢ ( 𝑧 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
28 |
17 27
|
syl5bb |
⊢ ( 𝑧 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
29 |
28
|
pm5.32i |
⊢ ( ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
30 |
2 19 20 21 1
|
elocv |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
31 |
|
3anan12 |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
32 |
30 31
|
bitri |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑧 ∈ 𝑉 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑉 ∧ ∀ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
33 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ↔ ( 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
34 |
29 32 33
|
3bitr4i |
⊢ ( 𝑧 ∈ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ↔ 𝑧 ∈ ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) ) |
35 |
34
|
eqriv |
⊢ ( ⊥ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘ 𝐵 ) ) |