Step |
Hyp |
Ref |
Expression |
1 |
|
dfiun3g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
3 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
4 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
6
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ) |
8 |
|
ssonuni |
⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) ) |
9 |
8
|
imp |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) |
10 |
5 7 9
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) |
11 |
2 10
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On ) |