Step |
Hyp |
Ref |
Expression |
1 |
|
dfiun2g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
2 |
1
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
3 |
|
uniiunlem |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) ) |
4 |
3
|
ibi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) |
5 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
7 |
2 6
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |