Metamath Proof Explorer


Theorem iunopn

Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion iunopn ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → 𝑥𝐴 𝐵𝐽 )

Proof

Step Hyp Ref Expression
1 dfiun2g ( ∀ 𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )
2 1 adantl ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )
3 uniiunlem ( ∀ 𝑥𝐴 𝐵𝐽 → ( ∀ 𝑥𝐴 𝐵𝐽 ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) )
4 3 ibi ( ∀ 𝑥𝐴 𝐵𝐽 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐽 )
5 uniopn ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ 𝐽 )
6 4 5 sylan2 ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ 𝐽 )
7 2 6 eqeltrd ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 𝐵𝐽 ) → 𝑥𝐴 𝐵𝐽 )