Metamath Proof Explorer


Theorem iunpreima

Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion iunpreima ( Fun 𝐹 → ( 𝐹 𝑥𝐴 𝐵 ) = 𝑥𝐴 ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 eliun ( ( 𝐹𝑦 ) ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝐵 )
2 1 a1i ( Fun 𝐹 → ( ( 𝐹𝑦 ) ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝐵 ) )
3 2 rabbidv ( Fun 𝐹 → { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝑥𝐴 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝐵 } )
4 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
5 fncnvima2 ( 𝐹 Fn dom 𝐹 → ( 𝐹 𝑥𝐴 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝑥𝐴 𝐵 } )
6 4 5 sylbi ( Fun 𝐹 → ( 𝐹 𝑥𝐴 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝑥𝐴 𝐵 } )
7 iunrab 𝑥𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝐵 }
8 7 a1i ( Fun 𝐹 𝑥𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥𝐴 ( 𝐹𝑦 ) ∈ 𝐵 } )
9 3 6 8 3eqtr4d ( Fun 𝐹 → ( 𝐹 𝑥𝐴 𝐵 ) = 𝑥𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } )
10 fncnvima2 ( 𝐹 Fn dom 𝐹 → ( 𝐹𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } )
11 4 10 sylbi ( Fun 𝐹 → ( 𝐹𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } )
12 11 iuneq2d ( Fun 𝐹 𝑥𝐴 ( 𝐹𝐵 ) = 𝑥𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹𝑦 ) ∈ 𝐵 } )
13 9 12 eqtr4d ( Fun 𝐹 → ( 𝐹 𝑥𝐴 𝐵 ) = 𝑥𝐴 ( 𝐹𝐵 ) )