Step |
Hyp |
Ref |
Expression |
1 |
|
iunpw.1 |
⊢ 𝐴 ∈ V |
2 |
|
sseq2 |
⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ∪ 𝐴 ) ) |
3 |
2
|
biimprcd |
⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( 𝑥 = ∪ 𝐴 → 𝑦 ⊆ 𝑥 ) ) |
4 |
3
|
reximdv |
⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
5 |
4
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
6 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥 ) |
7 |
|
uniiun |
⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
8 |
6 7
|
sseqtrrdi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝐴 ) |
9 |
5 8
|
impbid1 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
10 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴 ) |
11 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) |
12 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥 ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
14 |
11 13
|
bitri |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
15 |
9 10 14
|
3bitr4g |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
16 |
15
|
eqrdv |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
17 |
|
ssid |
⊢ ∪ 𝐴 ⊆ ∪ 𝐴 |
18 |
1
|
uniex |
⊢ ∪ 𝐴 ∈ V |
19 |
18
|
elpw |
⊢ ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ⊆ ∪ 𝐴 ) |
20 |
|
eleq2 |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
21 |
19 20
|
bitr3id |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ⊆ ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
22 |
17 21
|
mpbii |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
23 |
|
eliun |
⊢ ( ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) |
24 |
22 23
|
sylib |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) |
25 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) |
26 |
|
elpwi |
⊢ ( ∪ 𝐴 ∈ 𝒫 𝑥 → ∪ 𝐴 ⊆ 𝑥 ) |
27 |
25 26
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) |
28 |
|
eqss |
⊢ ( 𝑥 = ∪ 𝐴 ↔ ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → 𝑥 = ∪ 𝐴 ) |
30 |
29
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∈ 𝒫 𝑥 → 𝑥 = ∪ 𝐴 ) ) |
31 |
30
|
reximia |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
32 |
24 31
|
syl |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
33 |
16 32
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |