| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunpw.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sseq2 |
⊢ ( 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ∪ 𝐴 ) ) |
| 3 |
2
|
biimprcd |
⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( 𝑥 = ∪ 𝐴 → 𝑦 ⊆ 𝑥 ) ) |
| 4 |
3
|
reximdv |
⊢ ( 𝑦 ⊆ ∪ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 5 |
4
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 6 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝑥 ) |
| 7 |
|
uniiun |
⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| 8 |
6 7
|
sseqtrrdi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 → 𝑦 ⊆ ∪ 𝐴 ) |
| 9 |
5 8
|
impbid1 |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ⊆ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |
| 10 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴 ) |
| 11 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) |
| 12 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥 ) |
| 13 |
12
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 14 |
11 13
|
bitri |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 15 |
9 10 14
|
3bitr4g |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
| 16 |
15
|
eqrdv |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 → 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
| 17 |
|
ssid |
⊢ ∪ 𝐴 ⊆ ∪ 𝐴 |
| 18 |
1
|
uniex |
⊢ ∪ 𝐴 ∈ V |
| 19 |
18
|
elpw |
⊢ ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ⊆ ∪ 𝐴 ) |
| 20 |
|
eleq2 |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ∈ 𝒫 ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
| 21 |
19 20
|
bitr3id |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ( ∪ 𝐴 ⊆ ∪ 𝐴 ↔ ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) ) |
| 22 |
17 21
|
mpbii |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
| 23 |
|
eliun |
⊢ ( ∪ 𝐴 ∈ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) |
| 24 |
22 23
|
sylib |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 ) |
| 25 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) |
| 26 |
|
elpwi |
⊢ ( ∪ 𝐴 ∈ 𝒫 𝑥 → ∪ 𝐴 ⊆ 𝑥 ) |
| 27 |
25 26
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) |
| 28 |
|
eqss |
⊢ ( 𝑥 = ∪ 𝐴 ↔ ( 𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥 ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∪ 𝐴 ∈ 𝒫 𝑥 ) → 𝑥 = ∪ 𝐴 ) |
| 30 |
29
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∈ 𝒫 𝑥 → 𝑥 = ∪ 𝐴 ) ) |
| 31 |
30
|
reximia |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∪ 𝐴 ∈ 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
| 32 |
24 31
|
syl |
⊢ ( 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 → ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ) |
| 33 |
16 32
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝐴 ↔ 𝒫 ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |