Metamath Proof Explorer


Theorem iunpwss

Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of Enderton p. 33. (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion iunpwss 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 ssiun ( ∃ 𝑥𝐴 𝑦𝑥𝑦 𝑥𝐴 𝑥 )
2 eliun ( 𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 )
3 velpw ( 𝑦 ∈ 𝒫 𝑥𝑦𝑥 )
4 3 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∃ 𝑥𝐴 𝑦𝑥 )
5 2 4 bitri ( 𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∃ 𝑥𝐴 𝑦𝑥 )
6 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦 𝐴 )
7 uniiun 𝐴 = 𝑥𝐴 𝑥
8 7 sseq2i ( 𝑦 𝐴𝑦 𝑥𝐴 𝑥 )
9 6 8 bitri ( 𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝑥 )
10 1 5 9 3imtr4i ( 𝑦 𝑥𝐴 𝒫 𝑥𝑦 ∈ 𝒫 𝐴 )
11 10 ssriv 𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴