Step |
Hyp |
Ref |
Expression |
1 |
|
iunab |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
2 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
3 |
2
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } ) |
4 |
3
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
5 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) } |
6 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
7 |
6
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) } |
8 |
5 7
|
eqtr4i |
⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
9 |
1 4 8
|
3eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |