| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iunrdx.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 –onto→ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							iunrdx.2 | 
							⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  𝐷  =  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							fof | 
							⊢ ( 𝐹 : 𝐴 –onto→ 𝐶  →  𝐹 : 𝐴 ⟶ 𝐶 )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐶 )  | 
						
						
							| 5 | 
							
								4
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							foelrn | 
							⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐶  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 8 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑧  ∈  𝐷  ↔  𝑧  ∈  𝐵 ) )  | 
						
						
							| 9 | 
							
								5 7 8
							 | 
							rexxfrd | 
							⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝐶 𝑧  ∈  𝐷  ↔  ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							bicomd | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵  ↔  ∃ 𝑦  ∈  𝐶 𝑧  ∈  𝐷 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							abbidv | 
							⊢ ( 𝜑  →  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 }  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐶 𝑧  ∈  𝐷 } )  | 
						
						
							| 12 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑥  ∈  𝐴 𝐵  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 }  | 
						
						
							| 13 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑦  ∈  𝐶 𝐷  =  { 𝑧  ∣  ∃ 𝑦  ∈  𝐶 𝑧  ∈  𝐷 }  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3eqtr4g | 
							⊢ ( 𝜑  →  ∪  𝑥  ∈  𝐴 𝐵  =  ∪  𝑦  ∈  𝐶 𝐷 )  |