Step |
Hyp |
Ref |
Expression |
1 |
|
iunrdx.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐶 ) |
2 |
|
iunrdx.2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝐷 = 𝐵 ) |
3 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐶 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
5 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
6 |
|
foelrn |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
7 |
1 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
8 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵 ) ) |
9 |
5 7 8
|
rexxfrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) |
10 |
9
|
bicomd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ) ) |
11 |
10
|
abbidv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 } ) |
12 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } |
13 |
|
df-iun |
⊢ ∪ 𝑦 ∈ 𝐶 𝐷 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷 ) |