Metamath Proof Explorer


Theorem iunrdx

Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses iunrdx.1 ( 𝜑𝐹 : 𝐴onto𝐶 )
iunrdx.2 ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → 𝐷 = 𝐵 )
Assertion iunrdx ( 𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷 )

Proof

Step Hyp Ref Expression
1 iunrdx.1 ( 𝜑𝐹 : 𝐴onto𝐶 )
2 iunrdx.2 ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → 𝐷 = 𝐵 )
3 fof ( 𝐹 : 𝐴onto𝐶𝐹 : 𝐴𝐶 )
4 1 3 syl ( 𝜑𝐹 : 𝐴𝐶 )
5 4 ffvelrnda ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝐶 )
6 foelrn ( ( 𝐹 : 𝐴onto𝐶𝑦𝐶 ) → ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
7 1 6 sylan ( ( 𝜑𝑦𝐶 ) → ∃ 𝑥𝐴 𝑦 = ( 𝐹𝑥 ) )
8 2 eleq2d ( ( 𝜑𝑦 = ( 𝐹𝑥 ) ) → ( 𝑧𝐷𝑧𝐵 ) )
9 5 7 8 rexxfrd ( 𝜑 → ( ∃ 𝑦𝐶 𝑧𝐷 ↔ ∃ 𝑥𝐴 𝑧𝐵 ) )
10 9 bicomd ( 𝜑 → ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑦𝐶 𝑧𝐷 ) )
11 10 abbidv ( 𝜑 → { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } = { 𝑧 ∣ ∃ 𝑦𝐶 𝑧𝐷 } )
12 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
13 df-iun 𝑦𝐶 𝐷 = { 𝑧 ∣ ∃ 𝑦𝐶 𝑧𝐷 }
14 11 12 13 3eqtr4g ( 𝜑 𝑥𝐴 𝐵 = 𝑦𝐶 𝐷 )