Metamath Proof Explorer


Theorem iunsn

Description: Indexed union of a singleton. Compare dfiun2 and rnmpt . (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Assertion iunsn 𝑥𝐴 { 𝐵 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }

Proof

Step Hyp Ref Expression
1 df-iun 𝑥𝐴 { 𝐵 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ { 𝐵 } }
2 velsn ( 𝑦 ∈ { 𝐵 } ↔ 𝑦 = 𝐵 )
3 2 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ { 𝐵 } ↔ ∃ 𝑥𝐴 𝑦 = 𝐵 )
4 3 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ { 𝐵 } } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }
5 1 4 eqtri 𝑥𝐴 { 𝐵 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }