Metamath Proof Explorer


Theorem iunsnima

Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020)

Ref Expression
Hypotheses iunsnima.1 ( 𝜑𝐴𝑉 )
iunsnima.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
Assertion iunsnima ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 iunsnima.1 ( 𝜑𝐴𝑉 )
2 iunsnima.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 elimasn ( 𝑦 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
6 opeliunxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) )
7 6 baib ( 𝑥𝐴 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑦𝐵 ) )
8 7 adantl ( ( 𝜑𝑥𝐴 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑦𝐵 ) )
9 5 8 syl5bb ( ( 𝜑𝑥𝐴 ) → ( 𝑦 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) ↔ 𝑦𝐵 ) )
10 9 eqrdv ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) = 𝐵 )