Step |
Hyp |
Ref |
Expression |
1 |
|
iunsnima.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
iunsnima.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
3 4
|
elimasn |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) |
6 |
|
opeliunxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
7 |
6
|
baib |
⊢ ( 𝑥 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
9 |
5 8
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) ↔ 𝑦 ∈ 𝐵 ) ) |
10 |
9
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑥 } ) = 𝐵 ) |