| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iunsnima.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							iunsnima.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							elimasn | 
							⊢ ( 𝑦  ∈  ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  “  { 𝑥 } )  ↔  〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							opeliunxp | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							baib | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ↔  𝑦  ∈  𝐵 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  ↔  𝑦  ∈  𝐵 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							bitrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ∈  ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  “  { 𝑥 } )  ↔  𝑦  ∈  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqrdv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  “  { 𝑥 } )  =  𝐵 )  |