Step |
Hyp |
Ref |
Expression |
1 |
|
iunsnima.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
iunsnima.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
3 |
|
iunsnima2.1 |
⊢ Ⅎ 𝑥 𝐶 |
4 |
|
iunsnima2.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐶 ) |
5 |
|
elimasng |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑧 ∈ V ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
6 |
5
|
elvd |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
8 |
3 4
|
opeliunxp2f |
⊢ ( 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) |
9 |
8
|
baib |
⊢ ( 𝑌 ∈ 𝐴 → ( 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑧 ∈ 𝐶 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ( 〈 𝑌 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑧 ∈ 𝐶 ) ) |
11 |
7 10
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ 𝑧 ∈ 𝐶 ) ) |
12 |
11
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) = 𝐶 ) |