Metamath Proof Explorer


Theorem iunsnima2

Description: Version of iunsnima with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypotheses iunsnima.1 ( 𝜑𝐴𝑉 )
iunsnima.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
iunsnima2.1 𝑥 𝐶
iunsnima2.2 ( 𝑥 = 𝑌𝐵 = 𝐶 )
Assertion iunsnima2 ( ( 𝜑𝑌𝐴 ) → ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 iunsnima.1 ( 𝜑𝐴𝑉 )
2 iunsnima.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑊 )
3 iunsnima2.1 𝑥 𝐶
4 iunsnima2.2 ( 𝑥 = 𝑌𝐵 = 𝐶 )
5 elimasng ( ( 𝑌𝐴𝑧 ∈ V ) → ( 𝑧 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
6 5 elvd ( 𝑌𝐴 → ( 𝑧 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
7 6 adantl ( ( 𝜑𝑌𝐴 ) → ( 𝑧 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ) )
8 3 4 opeliunxp2f ( ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑌𝐴𝑧𝐶 ) )
9 8 baib ( 𝑌𝐴 → ( ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑧𝐶 ) )
10 9 adantl ( ( 𝜑𝑌𝐴 ) → ( ⟨ 𝑌 , 𝑧 ⟩ ∈ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ 𝑧𝐶 ) )
11 7 10 bitrd ( ( 𝜑𝑌𝐴 ) → ( 𝑧 ∈ ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) ↔ 𝑧𝐶 ) )
12 11 eqrdv ( ( 𝜑𝑌𝐴 ) → ( 𝑥𝐴 ( { 𝑥 } × 𝐵 ) “ { 𝑌 } ) = 𝐶 )