Metamath Proof Explorer


Theorem iunss

Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 df-iun 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 }
2 1 sseq1i ( 𝑥𝐴 𝐵𝐶 ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ 𝐶 )
3 abss ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ 𝐶 ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
4 dfss2 ( 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦𝐶 ) )
5 4 ralbii ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) )
6 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
7 r19.23v ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
8 7 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
9 5 6 8 3bitrri ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 )
10 2 3 9 3bitri ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )