Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iunss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) | |
2 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
3 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) | |
4 | 1 2 3 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
5 | 4 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ) |