Metamath Proof Explorer


Theorem iunss1

Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunss1 ( 𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝑦𝐶 → ∃ 𝑥𝐵 𝑦𝐶 ) )
2 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
3 eliun ( 𝑦 𝑥𝐵 𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐶 )
4 1 2 3 3imtr4g ( 𝐴𝐵 → ( 𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶 ) )
5 4 ssrdv ( 𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶 )