Description: A subclass condition on the members of two indexed classes C ( x ) and D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of TakeutiZaring p. 59. Compare uniss2 . (Contributed by NM, 9-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | iunss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssiun | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ) | |
2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ) |
3 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ) | |
4 | 2 3 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷 ) |