Metamath Proof Explorer


Theorem iunss2

Description: A subclass condition on the members of two indexed classes C ( x ) and D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of TakeutiZaring p. 59. Compare uniss2 . (Contributed by NM, 9-Dec-2004)

Ref Expression
Assertion iunss2 ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 ssiun ( ∃ 𝑦𝐵 𝐶𝐷𝐶 𝑦𝐵 𝐷 )
2 1 ralimi ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷 → ∀ 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )
3 iunss ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 ↔ ∀ 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )
4 2 3 sylibr ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )