Metamath Proof Explorer
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)
|
|
Ref |
Expression |
|
Hypothesis |
iunssd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
iunssd |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iunssd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
2 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
3 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
4 |
2 3
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |