Metamath Proof Explorer


Theorem iunssd

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis iunssd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion iunssd ( 𝜑 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunssd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
3 iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
4 2 3 sylibr ( 𝜑 𝑥𝐴 𝐵𝐶 )