Metamath Proof Explorer
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
iunssdf.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
iunssdf.2 |
⊢ Ⅎ 𝑥 𝐶 |
|
|
iunssdf.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
iunssdf |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iunssdf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
iunssdf.2 |
⊢ Ⅎ 𝑥 𝐶 |
3 |
|
iunssdf.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
4 |
1 3
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
5 |
2
|
iunssf |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
6 |
4 5
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |