Metamath Proof Explorer


Theorem iunssdf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iunssdf.1 𝑥 𝜑
iunssdf.2 𝑥 𝐶
iunssdf.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion iunssdf ( 𝜑 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunssdf.1 𝑥 𝜑
2 iunssdf.2 𝑥 𝐶
3 iunssdf.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
4 1 3 ralrimia ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
5 2 iunssf ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
6 4 5 sylibr ( 𝜑 𝑥𝐴 𝐵𝐶 )