| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iunssf.1 | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 2 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑥  ∈  𝐴 𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  | 
						
						
							| 3 | 
							
								2
							 | 
							sseq1i | 
							⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ⊆  𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							abss | 
							⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ⊆  𝐶  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-ss | 
							⊢ ( 𝐵  ⊆  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ralcom4 | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  𝐶  | 
						
						
							| 9 | 
							
								8
							 | 
							r19.23 | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							3bitrri | 
							⊢ ( ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶 )  | 
						
						
							| 12 | 
							
								3 4 11
							 | 
							3bitri | 
							⊢ ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  𝐶  ↔  ∀ 𝑥  ∈  𝐴 𝐵  ⊆  𝐶 )  |