Step |
Hyp |
Ref |
Expression |
1 |
|
iunssf.1 |
⊢ Ⅎ 𝑥 𝐶 |
2 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } |
3 |
2
|
sseq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ 𝐶 ) |
4 |
|
abss |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ 𝐶 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
5 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
7 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
8 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
9 |
8
|
r19.23 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
11 |
6 7 10
|
3bitrri |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
12 |
3 4 11
|
3bitri |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |