Metamath Proof Explorer


Theorem iunssf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis iunssf.1 𝑥 𝐶
Assertion iunssf ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunssf.1 𝑥 𝐶
2 df-iun 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 }
3 2 sseq1i ( 𝑥𝐴 𝐵𝐶 ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ 𝐶 )
4 abss ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ 𝐶 ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
5 dfss2 ( 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦𝐶 ) )
6 5 ralbii ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) )
7 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
8 1 nfcri 𝑥 𝑦𝐶
9 8 r19.23 ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
10 9 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
11 6 7 10 3bitrri ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 )
12 3 4 11 3bitri ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )