Metamath Proof Explorer


Theorem iunssf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Avoid ax-10 . (Revised by SN, 2-Feb-2026)

Ref Expression
Hypothesis iunssf.1 𝑥 𝐶
Assertion iunssf ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunssf.1 𝑥 𝐶
2 df-ss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
3 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
4 3 imbi1i ( ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
5 4 albii ( ∀ 𝑦 ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
6 df-ss ( 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦𝐶 ) )
7 6 ralbii ( ∀ 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) )
8 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
9 1 nfcri 𝑥 𝑦𝐶
10 9 r19.23 ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
11 10 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
12 7 8 11 3bitrri ( ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝐵𝐶 )
13 2 5 12 3bitri ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )