Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunsuc.1 | ⊢ 𝐴 ∈ V | |
iunsuc.2 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
Assertion | iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunsuc.1 | ⊢ 𝐴 ∈ V | |
2 | iunsuc.2 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
3 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
4 | iuneq1 | ⊢ ( suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) → ∪ 𝑥 ∈ suc 𝐴 𝐵 = ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵 ) | |
5 | 3 4 | ax-mp | ⊢ ∪ 𝑥 ∈ suc 𝐴 𝐵 = ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵 |
6 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝐴 } 𝐵 ) | |
7 | 1 2 | iunxsn | ⊢ ∪ 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶 |
8 | 7 | uneq2i | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝐴 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶 ) |
9 | 5 6 8 | 3eqtri | ⊢ ∪ 𝑥 ∈ suc 𝐴 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶 ) |