Metamath Proof Explorer


Theorem iunsuc

Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses iunsuc.1 𝐴 ∈ V
iunsuc.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion iunsuc 𝑥 ∈ suc 𝐴 𝐵 = ( 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iunsuc.1 𝐴 ∈ V
2 iunsuc.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
3 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
4 iuneq1 ( suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) → 𝑥 ∈ suc 𝐴 𝐵 = 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵 )
5 3 4 ax-mp 𝑥 ∈ suc 𝐴 𝐵 = 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵
6 iunxun 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) 𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ { 𝐴 } 𝐵 )
7 1 2 iunxsn 𝑥 ∈ { 𝐴 } 𝐵 = 𝐶
8 7 uneq2i ( 𝑥𝐴 𝐵 𝑥 ∈ { 𝐴 } 𝐵 ) = ( 𝑥𝐴 𝐵𝐶 )
9 5 6 8 3eqtri 𝑥 ∈ suc 𝐴 𝐵 = ( 𝑥𝐴 𝐵𝐶 )