Step |
Hyp |
Ref |
Expression |
1 |
|
r19.43 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
2 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) |
3 |
2
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) |
4 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
6 |
4 5
|
orbi12i |
⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
7 |
1 3 6
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
8 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) |
9 |
|
elun |
⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
11 |
10
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) |