Metamath Proof Explorer


Theorem iunun

Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iunun 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 r19.43 ( ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵 ∨ ∃ 𝑥𝐴 𝑦𝐶 ) )
2 elun ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
3 2 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
4 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
5 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
6 4 5 orbi12i ( ( 𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵 ∨ ∃ 𝑥𝐴 𝑦𝐶 ) )
7 1 3 6 3bitr4i ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶 ) )
8 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
9 elun ( 𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶 ) )
10 7 8 9 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 ) )
11 10 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 )