Step |
Hyp |
Ref |
Expression |
1 |
|
iunxdif2.1 |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) |
2 |
|
iunss2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) |
3 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
4 |
|
iunss1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 ) |
5 |
3 4
|
ax-mp |
⊢ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
6 |
1
|
cbviunv |
⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
7 |
5 6
|
sseqtrri |
⊢ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
8 |
2 7
|
jctil |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) ) |
9 |
|
eqss |
⊢ ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) ) |
10 |
8 9
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |