Metamath Proof Explorer


Theorem iunxdif2

Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004)

Ref Expression
Hypothesis iunxdif2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
Assertion iunxdif2 ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝐶𝐷 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 = 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 iunxdif2.1 ( 𝑥 = 𝑦𝐶 = 𝐷 )
2 iunss2 ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝐶𝐷 𝑥𝐴 𝐶 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 )
3 difss ( 𝐴𝐵 ) ⊆ 𝐴
4 iunss1 ( ( 𝐴𝐵 ) ⊆ 𝐴 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 𝑦𝐴 𝐷 )
5 3 4 ax-mp 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 𝑦𝐴 𝐷
6 1 cbviunv 𝑥𝐴 𝐶 = 𝑦𝐴 𝐷
7 5 6 sseqtrri 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 𝑥𝐴 𝐶
8 2 7 jctil ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝐶𝐷 → ( 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 ) )
9 eqss ( 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 = 𝑥𝐴 𝐶 ↔ ( 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 ) )
10 8 9 sylibr ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝐶𝐷 𝑦 ∈ ( 𝐴𝐵 ) 𝐷 = 𝑥𝐴 𝐶 )