Metamath Proof Explorer


Theorem iunxdif3

Description: An indexed union where some terms are the empty set. See iunxdif2 . (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Hypothesis iunxdif3.1 𝑥 𝐸
Assertion iunxdif3 ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 = 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 iunxdif3.1 𝑥 𝐸
2 inss2 ( 𝐴𝐸 ) ⊆ 𝐸
3 nfcv 𝑥 𝐴
4 3 1 nfin 𝑥 ( 𝐴𝐸 )
5 4 1 ssrexf ( ( 𝐴𝐸 ) ⊆ 𝐸 → ( ∃ 𝑥 ∈ ( 𝐴𝐸 ) 𝑦𝐵 → ∃ 𝑥𝐸 𝑦𝐵 ) )
6 eliun ( 𝑦 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ↔ ∃ 𝑥 ∈ ( 𝐴𝐸 ) 𝑦𝐵 )
7 eliun ( 𝑦 𝑥𝐸 𝐵 ↔ ∃ 𝑥𝐸 𝑦𝐵 )
8 5 6 7 3imtr4g ( ( 𝐴𝐸 ) ⊆ 𝐸 → ( 𝑦 𝑥 ∈ ( 𝐴𝐸 ) 𝐵𝑦 𝑥𝐸 𝐵 ) )
9 8 ssrdv ( ( 𝐴𝐸 ) ⊆ 𝐸 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥𝐸 𝐵 )
10 2 9 ax-mp 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥𝐸 𝐵
11 iuneq2 ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = 𝑥𝐸 ∅ )
12 iun0 𝑥𝐸 ∅ = ∅
13 11 12 eqtrdi ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = ∅ )
14 10 13 sseqtrid ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ⊆ ∅ )
15 ss0 ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ⊆ ∅ → 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 = ∅ )
16 14 15 syl ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 = ∅ )
17 16 uneq1d ( ∀ 𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = ( ∅ ∪ 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) )
18 iunxun 𝑥 ∈ ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) 𝐵 = ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 )
19 inundif ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴
20 19 nfth 𝑥 ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴
21 3 1 nfdif 𝑥 ( 𝐴𝐸 )
22 4 21 nfun 𝑥 ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) )
23 id ( ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴 → ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴 )
24 eqidd ( ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴𝐵 = 𝐵 )
25 20 22 3 23 24 iuneq12df ( ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) = 𝐴 𝑥 ∈ ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) 𝐵 = 𝑥𝐴 𝐵 )
26 19 25 ax-mp 𝑥 ∈ ( ( 𝐴𝐸 ) ∪ ( 𝐴𝐸 ) ) 𝐵 = 𝑥𝐴 𝐵
27 18 26 eqtr3i ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = 𝑥𝐴 𝐵
28 27 a1i ( ∀ 𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = 𝑥𝐴 𝐵 )
29 uncom ( ∅ ∪ 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ∪ ∅ )
30 un0 ( 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ∪ ∅ ) = 𝑥 ∈ ( 𝐴𝐸 ) 𝐵
31 29 30 eqtri ( ∅ ∪ 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = 𝑥 ∈ ( 𝐴𝐸 ) 𝐵
32 31 a1i ( ∀ 𝑥𝐸 𝐵 = ∅ → ( ∅ ∪ 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 ) = 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 )
33 17 28 32 3eqtr3rd ( ∀ 𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ ( 𝐴𝐸 ) 𝐵 = 𝑥𝐴 𝐵 )