Step |
Hyp |
Ref |
Expression |
1 |
|
iunxdif3.1 |
⊢ Ⅎ 𝑥 𝐸 |
2 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
4 |
3 1
|
nfin |
⊢ Ⅎ 𝑥 ( 𝐴 ∩ 𝐸 ) |
5 |
4 1
|
ssrexf |
⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐸 𝑦 ∈ 𝐵 ) ) |
6 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝑦 ∈ 𝐵 ) |
7 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐸 𝐵 ↔ ∃ 𝑥 ∈ 𝐸 𝑦 ∈ 𝐵 ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐸 𝐵 ) ) |
9 |
8
|
ssrdv |
⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐸 𝐵 ) |
10 |
2 9
|
ax-mp |
⊢ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐸 𝐵 |
11 |
|
iuneq2 |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐸 𝐵 = ∪ 𝑥 ∈ 𝐸 ∅ ) |
12 |
|
iun0 |
⊢ ∪ 𝑥 ∈ 𝐸 ∅ = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐸 𝐵 = ∅ ) |
14 |
10 13
|
sseqtrid |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∅ ) |
15 |
|
ss0 |
⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 = ∅ ) |
16 |
14 15
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 = ∅ ) |
17 |
16
|
uneq1d |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) ) |
18 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) |
19 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 |
20 |
19
|
nfth |
⊢ Ⅎ 𝑥 ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 |
21 |
3 1
|
nfdif |
⊢ Ⅎ 𝑥 ( 𝐴 ∖ 𝐸 ) |
22 |
4 21
|
nfun |
⊢ Ⅎ 𝑥 ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) |
23 |
|
id |
⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 ) |
24 |
|
eqidd |
⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → 𝐵 = 𝐵 ) |
25 |
20 22 3 23 24
|
iuneq12df |
⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
26 |
19 25
|
ax-mp |
⊢ ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 |
27 |
18 26
|
eqtr3i |
⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ 𝐴 𝐵 |
28 |
27
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
29 |
|
uncom |
⊢ ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ( ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ∪ ∅ ) |
30 |
|
un0 |
⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ∪ ∅ ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 |
31 |
29 30
|
eqtri |
⊢ ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 |
32 |
31
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) |
33 |
17 28 32
|
3eqtr3rd |
⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |