Metamath Proof Explorer


Theorem iunxiun

Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion iunxiun 𝑥 𝑦𝐴 𝐵 𝐶 = 𝑦𝐴 𝑥𝐵 𝐶

Proof

Step Hyp Ref Expression
1 eliun ( 𝑥 𝑦𝐴 𝐵 ↔ ∃ 𝑦𝐴 𝑥𝐵 )
2 1 anbi1i ( ( 𝑥 𝑦𝐴 𝐵𝑧𝐶 ) ↔ ( ∃ 𝑦𝐴 𝑥𝐵𝑧𝐶 ) )
3 r19.41v ( ∃ 𝑦𝐴 ( 𝑥𝐵𝑧𝐶 ) ↔ ( ∃ 𝑦𝐴 𝑥𝐵𝑧𝐶 ) )
4 2 3 bitr4i ( ( 𝑥 𝑦𝐴 𝐵𝑧𝐶 ) ↔ ∃ 𝑦𝐴 ( 𝑥𝐵𝑧𝐶 ) )
5 4 exbii ( ∃ 𝑥 ( 𝑥 𝑦𝐴 𝐵𝑧𝐶 ) ↔ ∃ 𝑥𝑦𝐴 ( 𝑥𝐵𝑧𝐶 ) )
6 rexcom4 ( ∃ 𝑦𝐴𝑥 ( 𝑥𝐵𝑧𝐶 ) ↔ ∃ 𝑥𝑦𝐴 ( 𝑥𝐵𝑧𝐶 ) )
7 5 6 bitr4i ( ∃ 𝑥 ( 𝑥 𝑦𝐴 𝐵𝑧𝐶 ) ↔ ∃ 𝑦𝐴𝑥 ( 𝑥𝐵𝑧𝐶 ) )
8 df-rex ( ∃ 𝑥 𝑦𝐴 𝐵 𝑧𝐶 ↔ ∃ 𝑥 ( 𝑥 𝑦𝐴 𝐵𝑧𝐶 ) )
9 eliun ( 𝑧 𝑥𝐵 𝐶 ↔ ∃ 𝑥𝐵 𝑧𝐶 )
10 df-rex ( ∃ 𝑥𝐵 𝑧𝐶 ↔ ∃ 𝑥 ( 𝑥𝐵𝑧𝐶 ) )
11 9 10 bitri ( 𝑧 𝑥𝐵 𝐶 ↔ ∃ 𝑥 ( 𝑥𝐵𝑧𝐶 ) )
12 11 rexbii ( ∃ 𝑦𝐴 𝑧 𝑥𝐵 𝐶 ↔ ∃ 𝑦𝐴𝑥 ( 𝑥𝐵𝑧𝐶 ) )
13 7 8 12 3bitr4i ( ∃ 𝑥 𝑦𝐴 𝐵 𝑧𝐶 ↔ ∃ 𝑦𝐴 𝑧 𝑥𝐵 𝐶 )
14 eliun ( 𝑧 𝑥 𝑦𝐴 𝐵 𝐶 ↔ ∃ 𝑥 𝑦𝐴 𝐵 𝑧𝐶 )
15 eliun ( 𝑧 𝑦𝐴 𝑥𝐵 𝐶 ↔ ∃ 𝑦𝐴 𝑧 𝑥𝐵 𝐶 )
16 13 14 15 3bitr4i ( 𝑧 𝑥 𝑦𝐴 𝐵 𝐶𝑧 𝑦𝐴 𝑥𝐵 𝐶 )
17 16 eqriv 𝑥 𝑦𝐴 𝐵 𝐶 = 𝑦𝐴 𝑥𝐵 𝐶