Metamath Proof Explorer


Theorem iunxpconst

Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion iunxpconst 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = ( 𝐴 × 𝐵 )

Proof

Step Hyp Ref Expression
1 xpiundir ( 𝑥𝐴 { 𝑥 } × 𝐵 ) = 𝑥𝐴 ( { 𝑥 } × 𝐵 )
2 iunid 𝑥𝐴 { 𝑥 } = 𝐴
3 2 xpeq1i ( 𝑥𝐴 { 𝑥 } × 𝐵 ) = ( 𝐴 × 𝐵 )
4 1 3 eqtr3i 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = ( 𝐴 × 𝐵 )