Step |
Hyp |
Ref |
Expression |
1 |
|
iunxpf.1 |
⊢ Ⅎ 𝑦 𝐶 |
2 |
|
iunxpf.2 |
⊢ Ⅎ 𝑧 𝐶 |
3 |
|
iunxpf.3 |
⊢ Ⅎ 𝑥 𝐷 |
4 |
|
iunxpf.4 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → 𝐶 = 𝐷 ) |
5 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝐶 |
6 |
2
|
nfcri |
⊢ Ⅎ 𝑧 𝑤 ∈ 𝐶 |
7 |
3
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
8 |
4
|
eleq2d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷 ) ) |
9 |
5 6 7 8
|
rexxpf |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
10 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤 ∈ 𝐶 ) |
11 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ) |
12 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
14 |
11 13
|
bitri |
⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
15 |
9 10 14
|
3bitr4i |
⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ) |
16 |
15
|
eqriv |
⊢ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |