| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunxpf.1 | ⊢ Ⅎ 𝑦 𝐶 | 
						
							| 2 |  | iunxpf.2 | ⊢ Ⅎ 𝑧 𝐶 | 
						
							| 3 |  | iunxpf.3 | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 4 |  | iunxpf.4 | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  𝐶  =  𝐷 ) | 
						
							| 5 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑤  ∈  𝐶 | 
						
							| 6 | 2 | nfcri | ⊢ Ⅎ 𝑧 𝑤  ∈  𝐶 | 
						
							| 7 | 3 | nfcri | ⊢ Ⅎ 𝑥 𝑤  ∈  𝐷 | 
						
							| 8 | 4 | eleq2d | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  ( 𝑤  ∈  𝐶  ↔  𝑤  ∈  𝐷 ) ) | 
						
							| 9 | 5 6 7 8 | rexxpf | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝑤  ∈  𝐶  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑤  ∈  𝐷 ) | 
						
							| 10 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝐶  ↔  ∃ 𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝑤  ∈  𝐶 ) | 
						
							| 11 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑦  ∈  𝐴 ∪  𝑧  ∈  𝐵 𝐷  ↔  ∃ 𝑦  ∈  𝐴 𝑤  ∈  ∪  𝑧  ∈  𝐵 𝐷 ) | 
						
							| 12 |  | eliun | ⊢ ( 𝑤  ∈  ∪  𝑧  ∈  𝐵 𝐷  ↔  ∃ 𝑧  ∈  𝐵 𝑤  ∈  𝐷 ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑤  ∈  ∪  𝑧  ∈  𝐵 𝐷  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑤  ∈  𝐷 ) | 
						
							| 14 | 11 13 | bitri | ⊢ ( 𝑤  ∈  ∪  𝑦  ∈  𝐴 ∪  𝑧  ∈  𝐵 𝐷  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑤  ∈  𝐷 ) | 
						
							| 15 | 9 10 14 | 3bitr4i | ⊢ ( 𝑤  ∈  ∪  𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝐶  ↔  𝑤  ∈  ∪  𝑦  ∈  𝐴 ∪  𝑧  ∈  𝐵 𝐷 ) | 
						
							| 16 | 15 | eqriv | ⊢ ∪  𝑥  ∈  ( 𝐴  ×  𝐵 ) 𝐶  =  ∪  𝑦  ∈  𝐴 ∪  𝑧  ∈  𝐵 𝐷 |