Step |
Hyp |
Ref |
Expression |
1 |
|
iunxprg.1 |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
2 |
|
iunxprg.2 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
3 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
4 |
|
iuneq1 |
⊢ ( { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) → ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ∪ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 ) |
5 |
3 4
|
ax-mp |
⊢ ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ∪ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 |
6 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 = ( ∪ 𝑥 ∈ { 𝐴 } 𝐶 ∪ ∪ 𝑥 ∈ { 𝐵 } 𝐶 ) |
7 |
5 6
|
eqtri |
⊢ ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( ∪ 𝑥 ∈ { 𝐴 } 𝐶 ∪ ∪ 𝑥 ∈ { 𝐵 } 𝐶 ) |
8 |
1
|
iunxsng |
⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
10 |
2
|
iunxsng |
⊢ ( 𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
12 |
9 11
|
uneq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∪ 𝑥 ∈ { 𝐴 } 𝐶 ∪ ∪ 𝑥 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 ∪ 𝐸 ) ) |
13 |
7 12
|
eqtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 ∪ 𝐸 ) ) |