Metamath Proof Explorer


Theorem iunxprg

Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Hypotheses iunxprg.1 ( 𝑥 = 𝐴𝐶 = 𝐷 )
iunxprg.2 ( 𝑥 = 𝐵𝐶 = 𝐸 )
Assertion iunxprg ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷𝐸 ) )

Proof

Step Hyp Ref Expression
1 iunxprg.1 ( 𝑥 = 𝐴𝐶 = 𝐷 )
2 iunxprg.2 ( 𝑥 = 𝐵𝐶 = 𝐸 )
3 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
4 iuneq1 ( { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 )
5 3 4 ax-mp 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶
6 iunxun 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 = ( 𝑥 ∈ { 𝐴 } 𝐶 𝑥 ∈ { 𝐵 } 𝐶 )
7 5 6 eqtri 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝑥 ∈ { 𝐴 } 𝐶 𝑥 ∈ { 𝐵 } 𝐶 )
8 1 iunxsng ( 𝐴𝑉 𝑥 ∈ { 𝐴 } 𝐶 = 𝐷 )
9 8 adantr ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐴 } 𝐶 = 𝐷 )
10 2 iunxsng ( 𝐵𝑊 𝑥 ∈ { 𝐵 } 𝐶 = 𝐸 )
11 10 adantl ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐵 } 𝐶 = 𝐸 )
12 9 11 uneq12d ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 ∈ { 𝐴 } 𝐶 𝑥 ∈ { 𝐵 } 𝐶 ) = ( 𝐷𝐸 ) )
13 7 12 syl5eq ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷𝐸 ) )