| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunxpssiun1.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ⊆ 𝐸 ) |
| 2 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 6 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 7 |
4 5 6
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 8 |
3 7
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 9 |
|
xpss12 |
⊢ ( ( 𝐵 ⊆ ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∧ 𝐶 ⊆ 𝐸 ) → ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ) |
| 10 |
8 1 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 13 |
12 5
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐸 |
| 15 |
13 14
|
nfxp |
⊢ Ⅎ 𝑥 ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) |
| 16 |
15
|
iunssf |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ) |
| 17 |
11 16
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) ) |
| 18 |
7
|
xpeq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸 ) = ( ∪ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 × 𝐸 ) |
| 19 |
17 18
|
sseqtrrdi |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐸 ) ) |