Metamath Proof Explorer


Theorem iunxpssiun1

Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypothesis iunxpssiun1.1 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐸 )
Assertion iunxpssiun1 ( 𝜑 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑥𝐴 𝐵 × 𝐸 ) )

Proof

Step Hyp Ref Expression
1 iunxpssiun1.1 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐸 )
2 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
3 2 adantl ( ( 𝜑𝑥𝐴 ) → 𝐵 𝑥𝐴 𝐵 )
4 nfcv 𝑦 𝐵
5 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
6 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
7 4 5 6 cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥 𝐵
8 3 7 sseqtrdi ( ( 𝜑𝑥𝐴 ) → 𝐵 𝑦𝐴 𝑦 / 𝑥 𝐵 )
9 xpss12 ( ( 𝐵 𝑦𝐴 𝑦 / 𝑥 𝐵𝐶𝐸 ) → ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) )
10 8 1 9 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) )
11 10 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) )
12 nfcv 𝑥 𝐴
13 12 5 nfiun 𝑥 𝑦𝐴 𝑦 / 𝑥 𝐵
14 nfcv 𝑥 𝐸
15 13 14 nfxp 𝑥 ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 )
16 15 iunssf ( 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) ↔ ∀ 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) )
17 11 16 sylibr ( 𝜑 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 ) )
18 7 xpeq1i ( 𝑥𝐴 𝐵 × 𝐸 ) = ( 𝑦𝐴 𝑦 / 𝑥 𝐵 × 𝐸 )
19 17 18 sseqtrrdi ( 𝜑 𝑥𝐴 ( 𝐵 × 𝐶 ) ⊆ ( 𝑥𝐴 𝐵 × 𝐸 ) )